
Distributed Simulation with Efficient Fault
Tolerance

Javier Vela1[0000−0002−6818−9191], Unai Arronategui2[0000−0003−4457−3938],
José Ángel Bañares2[0000−0002−4198−8241], and José Manuel

Colom2[0000−0001−5066−4030]

1 Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas
(IPE-CSIC), Zaragoza, Spain jvela@ipe.csic.es

2 Universidad de Zaragoza, Zaragoza, Spain {unai,banares,jm}@unizar.es

Abstract. Fault tolerance is essential for the correct execution of large
distributed simulations of discrete event systems, as the likelihood of
faults increases with the size of the cloud infrastructure used. Achieving
optimal performance and cost in a fault-tolerant distributed simulation
remains a challenge. In this paper, we propose a replication-based ap-
proach in a conservative distributed simulation strategy that is specifi-
cally designed to minimize latency introduced by fault tolerance mecha-
nisms. Unlike traditional replication methods, our method is tailored for
conservative simulation, leveraging simulation messages and timing to
maintain consistency while decoupling replica execution. As a result, our
approach reduces the need for messaging and synchronization and main-
tains eventual consistency windows with low latency overhead, achieving
near-nominal simulation performance in the absence of faults. If repli-
cas have similar performance, memory usage can be lower compared to
optimistic approaches, and recovery can be fast following a node fail-
ure, despite asynchronous replication. Experimental results show that
without faults, the performance of a distributed simulator with fault
management is similar to one without it. Recovery from a fault reveals
that the main overhead is in replica provisioning, with minimal overhead
for synchronization.

Keywords: Distributed Simulation · Petri Nets · Fault Tolerance · Cloud

1 Introduction

Discrete Event System (DES) simulation is a fundamental tool for analysing,
predicting, and designing systems across various domains. For large and com-
plex systems, distributed simulation becomes essential, as it allows for scalable
and efficient analysis. However, as the number of computational resources in
distributed simulations increases, faults become unavoidable, especially in long-
running simulations. Faults can result in the loss of the simulation state, requir-
ing fault-tolerant mechanisms to preserve data integrity and ensure successful
simulation finalization.

2 J. Vela et al.

The Cloud has proven to be an effective platform for distributed simulations
[15]. The Cloud offers the ability to scale resources according to model size
and dynamically adjust computing as needed during the simulation. Despite
these advantages, the adoption of distributed simulation of DESs in industrial
and commercial applications remains limited [9,10]. The Cloud’s pay-as-you-go
model requires efficient solutions that can guarantee the success of the simulation
at a limited cost, adding a layer of complexity that hinders industrial adoption.

In distributed simulations of DESs, the success and performance of the sim-
ulation depend on each model partition executed on each node. Additionally,
the overall processing speed is determined by the slowest simulator in the net-
work. Resilience is crucial for the successful execution of large-scale distributed
simulations, as faults become more common with the expansion of cloud infras-
tructure. Therefore, any fault tolerance mechanism must introduce minimal over-
head during normal operations to ensure cost-effectiveness within the Cloud’s
pay-as-you-go model.

Key factors such as data storage performance, computing processing rates,
network latencies, and dynamic model partitioning for load balancing are critical
in distributed simulations. As pointed by Ferscha et al. [9], the complexity of
these parameters makes it challenging to rely solely on analytical methods to
select the optimal simulation strategy, without detailed analysis. The choice of
causality consistency protocols is model-dependent and requires extensive pa-
rameter evaluation. Performance data mining and statistical analysis are rec-
ommended to determine the best approach for specific models and execution
environments.

In cloud environments, fault tolerance techniques are a hot topic, focusing on
proactive and reactive approaches [14] to predict failures using machine learning
and artificial intelligence. A key objective of these techniques is to maintain low
overhead during fault-free operations. With this requirement in mind, our work
proposes a replica-based approach for large-scale simulations in the Cloud. Our
approach is similar to other replica-based fault-tolerance mechanisms proposed
for the Cloud [17], but it uniquely employs simulation messages and timing to
maintain replica consistency and uses the model and simulation engine to recover
consistency efficiently without needing to store large amounts of state data. This
innovation reduces overhead and enhances fault recovery, making it a significant
advancement over traditional methods.

The remainder of this paper is organized as follows: Section 2 summarizes
the context of our previous works on distributed simulation, Section 3 presents
the main assumptions taken into account and the replication model-based ap-
proach, Section 4 shows that minimum overhead is introduced by the proposed
fault-tolerance mechanism in the experimental results, Section 5 briefly presents
related work, and Section 6 provides some final remarks.

Distributed Simulation with Efficient Fault Tolerance 3

2 Background: Efficient Distributed Simulation of Petri
Nets

The replication fault tolerance method in this study is based on the conserva-
tive strategy for distributed simulation. This section presents the fundamental
concepts of the conservative approach and explains why it is central to our
methodology.

Distributed simulation enhances both the execution speed and scalability
when analysing complex models. However, managing causality constraints in
the model poses a challenge. Our previous work focused on using Petri Nets
as the core formalism within a Model-Driven Engineering approach to leverage
the model at every stage of the DES lifecycle. This framework addresses chal-
lenges such as bridging the gap between model specification, code deployment
in distributed simulators, and simulation load balancing [4,3].

In distributed simulation, the model is divided into partitions that are sim-
ulated on different nodes. Each partition corresponds to a Logical Process (LP),
which performs tasks related to its assigned portion of the model and interacts
with other LPs through message exchange. The model partitioning is defined at
compilation time, and LPs cannot be changed dynamically. In our approach, LPs
act as simulator engines executing Petri Nets, interpreting the Linear Enabling
Function (LEF)-coded transitions specific to their partition. The LEF function
defines whether transitions in the system can be triggered, based on the state of
the Petri Net, reducing the time needed to determine enabled transitions and the
size of data structures representing the system’s subnetwork. Therefore, dynamic
workload balancing between LPs can be done by redistributing their LEF-coded
transitions between them [11].

We refer to the micro-kernels (LPs) in our distributed simulation as simbots.
Each simbot operates independently, with its own clock, and is connected to
others via a communication network. They execute partitions of the overall Petri
Net model, which contain transitions that either originate from or are directed
to other partitions. The set of all simbots in the simulator completes the Petri
Net model of the DES.

To maintain causality, distributed simulation employs two primary protocols:
conservative and optimistic. Conservative protocols use null messages to inform
neighbouring model partitions about the simulation time that can advance with-
out causing causality errors, such as receiving an event with an earlier timestamp
than the current simulation time. This approach can lead to idle periods in dis-
tributed simulators waiting for events from others. Optimistic protocols allow
the simulation to proceed, with the capability to roll back to a previous state if
a causality error occurs. An Ideal Simulation Protocol (ISP) [12] was introduced
to compare these methods. The idea is to use prior simulations to compute the
lookahead, a lower bound for the Local Virtual Time (LVT) that an LP commu-
nicates to its neighbours, enabling safe advancement. While ISP serves as the
optimal efficiency reference that can be achieved, it is impractical as it does not
consider any overhead communications between LPs.

4 J. Vela et al.

While our approach cannot eliminate communication overhead, exploiting
the Petri Net model allows us to obtain precise lookahead and minimize wait-
ing times. Consequently, we adopted a conservative strategy. Automating Petri
Net analysis using software tools for optimal model partitioning and estimating
lookahead is crucial for accelerating simulation on distributed platforms [5]. Mu-
rata and Wu [13] demonstrated that synchronic distances in a Petri Net, which
measure the degree of mutual dependence between occurrences of two transi-
tions, can be used for synchronization in distributed processing systems and can
be used to compute when events will be delivered to neighbouring LPs.

LVT (Clock)

PN Interpreter

Output
Buffer

Sim
Bot

Event Mailbox j

Control mailbox

Event Mailbox 1

Adjacent
SimbotLHVT

Input
Buffer

Communication Interface
PN Interpreter (Simulation Engine)

Sim
Bot

Model
Inference

PN Model Interpreter

Lefs code

(lookahead)

Future Event List

-Structural Model
-Event Dependencies
-Partition interface

Event
Log

Event
outsourcing

…

t10 t5 t3

t2 t1

Event Mailbox 2

t7 t5

Replication
Provisioner

Events to
neighbour Simbots

T5@t2, T7@t3

EVL
T1 T2

Connection
Manager

Fault
Tolerance

Model Partition & Load
Balancing (code migration)

Events from
neighbour Simbots

Fig. 1. Simbot Architecture

Figure 1 illustrates the architecture of a simbot as an LP using a conserva-
tive approach. Initially, the simbot calculates enabled transitions in the Event
List (EVL). Firing these transitions produces future events stored in the Future
Event List (FUL). Events can be internal or updates that must be communi-
cated over the network to the affecting adjacent simbots. The simbot processes
FUL events only when it is guaranteed that no events with an earlier execution
time will arrive from other simbots. Each event has a timestamp indicating its
occurrence time, ensuring that the simulation proceeds accurately and in order.
In LEF-based transition encoding, each transition in the Petri Net has an asso-
ciated value and a duration. When an event occurs, an integer updating factor
is added to the LEF value. If the resulting LEF value is zero or negative, the
transition becomes enabled and is added to the event list. The event’s timestamp
is determined by the current simulation time plus the transition’s duration.

A simbot synchronizes with others via a Communication interface, which in-
cludes a queue of incoming messages from other simbots, ordered by timestamp.
Each input queue has a timestamp field showing the timestamp of the queue’s
front event or the last received message if empty. The Local Horizon Time (LHT)

Distributed Simulation with Efficient Fault Tolerance 5

is the minimum of all queue fronts, indicating the latest point to which the local
clock can advance without inconsistencies. The simbot interleaves events from
its queue (FUL) with incoming message events up to the LHT, processing the
earliest events first. Events are processed until the LHT is reached. Continuing
the simulation beyond the LHT could result in receiving an event with an earlier
timestamp, leading to inconsistencies in the simulation. If an LP’s input queue
is empty, the LP must wait for new messages. This mechanism can lead to dead-
lock, so simbots send empty messages, called null messages, with a timestamp
indicating the lookahead to neighbours. The lookahead specifies the future time
when it guarantees no events will be sent.

On the left, Figure 1 shows the Communication interface responsible for
maintaining message consistency by computing the LHT. On the right, there
is the Petri Net interpreter used for processing events. At the bottom, the fig-
ure displays basic services, including communication, an event repository, load
balancing, and fault tolerance, which will be explained in subsequent sections.

3 A Performant Simulation Approach with Fault
Tolerance

The approach proposed in this paper is based on the following assumptions: 1)
only crash failures are considered, meaning nodes stop working; 2) communica-
tion of events and lookahead between simbots is ordered and reliable; 3) each
node runs only one simbot, so if a node fails, its corresponding simbot also fails.

A replicated state machine model, implemented within a replica group, pro-
cesses all events in each simbot. Each replica of a simbot processes events in the
same sequence from the same initial state, which justifies our preference for a
conservative approach. Although our mechanism currently assumes a leader and
a single replica per replica group, it can be easily extended by adding additional
replicas to enhance robustness.

In the non-fault-tolerant operation configuration, a simbot receives event
messages from its predecessors, which are the simbots simulating the subnet-
works with transitions leading to it, and sends event messages to its successors,
the simbots simulating the subnetworks with transitions originating from it.

In contrast, in the fault-tolerant configuration, only the leader within each
simbot replica group sends event messages to its successor simbots to prevent
them from receiving duplicate messages. However, all replicas of a simbot receive
messages from predecessor simbots, ensuring that in the event of a crash within a
replica group, one of the replicated simbots maintains the complete and correct
state of the simulation. These connections between neighbouring simbots are
illustrated in Figure 2. In summary, all replicas of a simbot run asynchronous,
complete simulation steps using received and local events to produce new events
as nominal simbots, but only leaders are allowed to send events and lookaheads
to successor simbots.

If a replica fails, the leader requests a replacement to keep the simulation’s
integrity. However, if the leader fails, the replica is promoted to leader and con-

6 J. Vela et al.

tinues the simulation with a new provisioned replica. In either case, synchroniza-
tion is needed to ensure all replicas remain consistent. The subsequent sections
describe the mechanisms used to maintain consistency between replicas both
before and after a crash, as well as how to detect and recover from crashes.

Fig. 2. Distributed Relations of Replicated Simbots

3.1 Decoupled Replication

Distributed simulations, particularly when executed across many nodes with
varying capabilities, can lead to differing simulation speeds among simbots. To
address this, implementing a more lenient consistency model by decoupling the
execution of the leader from its replicas minimizes the risk of slowing down
the entire simulation if one part lags due to delayed execution. This approach
necessitates integrating techniques that ensure strict consistency convergence if
a failure occurs when the leader and its replica have divergent states.

In non-fault conditions, decoupling the leader from its replicas reduces the
need for constant synchronization, enhancing overall simulation efficiency. This
configuration allows the leader simbot to handle the sending of external events
to successor simbots, while the replica generates but does not send these events.
Should the replica fail, the leader can continue the simulation unaffected, re-
gardless of whether the replica was ahead or behind in processing. Conversely,
if the leader fails, the replica can be found in one of these states at the time of
the crash:

– State D: Delayed Replica. The replica is lagging behind the leader in
processing events. When the leader crashes, the replica could resend events
already dispatched by the leader when promoting as the new leader and
resuming the simulation. These events should not be sent to avoid duplicates.

Distributed Simulation with Efficient Fault Tolerance 7

– State A: Advanced Replica. The replica has produced events, without
sending them to its successors, that the leader has not yet reached. When the
leader crashes, the replica could skip sending the already produced events
to its successors when promoting. These events must be stored to maintain
consistency and sent when the promotion takes place.

– State S: Synchronized Replica. If the leader and replica are processing
events at the same pace, the replica can continue seamlessly and resume
event dispatch to successors.

3.2 Consistency

Tracking the state of each leader and replica is crucial for determining the correct
course of action when handling events after a crash, particularly when the leader
of a simbot crashes and a replica needs to be promoted. This mechanism enables
the system to seamlessly restore and maintain consistency.

In this system, the events-sent message serves as a confirmation from the
leader that an event has been sent to successor simbots. Each event produced is
assigned a unique identifier, which is consistent across both the leader and the
replica due to the deterministic nature of the simulation. The unique identifier
ensures that every event and its confirmation carry the same serial number, thus
confirming the simulation step across all replicas reliably. The reception of an
events-sent message allows a replica to validate the progression of the simulation
state up to the received serial number, assuming that any event not validated
by a leader has not been transmitted to successor simbots.

The replication system operates within an eventual consistency window,
which must converge at the point of a failure. The leader sends event confir-
mations to the replica but does not wait for a response, and the replica does
not need to wait for these confirmations to continue the simulation. This pro-
cess reduces the number of messages and the waiting time required to maintain
consistency.

When a leader crashes, the events-sent message allows a replica to establish
whether it is in State D (Delayed) or A (Advanced). If the replica is in an
Advanced State, it must store generated event messages that the previous leader
had not yet validated with an events-sent message. The stored event messages
are then sent in order by the new leader before producing new ones. Conversely,
if in a Delayed State, the new leader, previously a replica, might avoid sending
the messages that the leader had already confirmed, as these would be duplicated
to the successors.

An essential aspect of this process is the invalidation mechanism employed
by successor simbots, which might receive duplicated messages: first from the
crashed leader and then from the newly promoted leader (formerly a replica).
The duplication issue can arise if the leader sends a message to its successor
but crashes before it can confirm this action to the replica. To address this,
successors store unique identifiers of received event messages, enabling them to
detect and discard any duplicates. Achieving an optimal balance between the
frequency of confirmations from the leader to the replica, and the number of

8 J. Vela et al.

messages that successors need to store for detecting duplicates, is crucial for
minimizing overhead and maximizing the system’s efficiency.

Algorithm 1 is executed by the replica to manage the differential state be-
tween the leader and itself. It tracks the last message confirmed by the leader
and the last message produced by the replica, allowing for the identification
and invalidation of potential duplicate messages, and avoid sending these to the
successors when promoting.

Algorithm 1 Differential State between Leader and Replica Registration
// Differential state between leader and replica. Init.: empty list
QR ← []
// Last message produced by replica and not confirmed by leader. Init: ID null mes-
sage
MR ← 0
// Last message acknowledged by leader. Init.: ID null-message
ML ← 0

// Register reception of acknowledgement message of an event from the leader
procedure registerAcknowledgementReceived(M : Acknowledgement)

ML ←MID

if MR >= ML then
QR.deleteF irst() // Replica is in advance or at the same point as the leader

else
no− op // (MR < ML) Replica is behind

end if
end procedure

// Event produced in replica
procedure registerProducedEvent(M : Message)

MR ←MID

if MR > ML then
QR.insertLast(M) // Replica is in advance

else
no−op // (MR <= ML) Replica is behind or at the same point as the leader

end if
end procedure

3.3 Fault Detection

If a simbot crashes, the entire simulation stops as the flow of event messages
ceases and simulation time cannot advance. To mitigate this, adjacent neigh-
bouring simbots are monitored, to efficiently detect and respond to potential
crashes. Additionally, within each replica group, both the leader and the repli-
cas actively monitor each other to ensure any faults are quickly identified.

Fatal faults occur when every member of a replica group, including the leader,
crashes. This scenario results in the triggering of notifications from neighbouring

Distributed Simulation with Efficient Fault Tolerance 9

simbots, leading to a complete halt of the distributed simulation. Terminating
the simulation is necessary because the state of the partition of the model in
the crashed simbot is irretrievably lost, compromising the integrity of the entire
simulation.

3.4 Fault Recovery

Fault recovery for each simbot is managed by its surviving replicas and coordi-
nated with its adjacent neighbours.

Replica Fault. When a simbot replica crashes, the leader promptly notifies
the Replica Provisioner, an external service that prepares the infrastructure and
initiates the simbot to simulate a specific subnetwork of the model. The Replica
Provisioner then dynamically provides a new replica node. Subsequently, pre-
decessor simbots synchronize with the new replica, and the leader transfers its
state to it, allowing the new replica to start connections and resume the simula-
tion from the same point as the leader. Finally, all neighbours resume simulation
with the leader and the new replica.

Leader Fault and Replica Promotion. If the leader fails, the replica is
promoted to become the new leader, notifies this role change to its predeces-
sor neighbours, and establishes new connections with the successor leaders and
replicas. Depending on its state at the time of the leader’s failure, the new leader
will take different actions to re-establish simulation consistency:

– State D: The new leader is behind the old one, so it abstains from send-
ing event messages until it produces an event with the last serial number
confirmed by the old leader.

– State A: The new leader is more advanced than the old one, so it replays
all stored messages from the last confirmation received from the old leader.

– State S: The new and old leader are in the same state, so no additional
action is needed.

Finally, all steps of replica fault recovery are applied, involving a request
for a new replica to the Replica Provisioner to ensure continuous simulation
operation.

3.5 Simbot Architecture

Figure 3 illustrates the architecture and software components of a fault-tolerant
simbot. The architecture is split into two primary threads: the Simulation thread
and the Communication thread. The Simulation thread runs the Simulation En-
gine and the Fault Tolerance Manager, while the Communication thread man-
ages the reception of messages from other simbots via the network, utilizing the
Mailbox and the Network Message Receiver. The Simbot component is the coordi-
nator of these threads and components. The Connection Manager is responsible
for maintaining persistent network connections with neighbouring simbots estab-
lished in Figure 2, managing both the connections established at the beginning

10 J. Vela et al.

Fig. 3. Simbot Architecture for Fault Tolerant Simulation

of the simulation and new connections created when new replicas are added after
a crash. The Replica Provisioner and Debug Server serve as auxiliary external
services.

Figure 4 describes the internal elements of the Fault Tolerance Manager,
which is a crucial component highlighted in Figure 3. The Fault Tolerance Man-
ager’s functionalities include the detection and management of faults, synchro-
nization, recovery of neighbour faults, coordination with the Replica Provisioner,
and consistency management. The Leader State Register executes the procedures
of algorithm 1 on the replica node. The Mailbox component redirects acknowl-
edgements from the leader and facilitates the production of local events by the
Simulation Engine. The Leader State Register plays a vital role in fault recov-
ery to ensure consistency across the simulation. The Duplicate Event Register
manages the reception of duplicate events post-fault and ensures their dismissal.
Each message is registered by the Mailbox before processing to detect any du-
plicates. The Network Message Receiver is tasked with the detection of faults in
other simbots, with any detected faults reported to the Fault Tolerance Manager,
which then manages these faults as allowed by the ongoing simulation execution.
Finally, the Fault Recovery component initiates activities that include requesting
a new replica from the Replica Provisioner.

4 Experimentation

The distributed simulator has been developed in the Rust language. The test
environment consists of a cluster of 20 Raspberry Pi 4 model B with 8 GB of
RAM and 1Gb Ethernet links through a 1Gb Ethernet switch. The fault-tolerant
configuration includes two nodes for each simbot, a leader and one replica.

Table 1 illustrates the execution time differences between the fault-tolerant
simulator and the non-fault-tolerant simulator in a worst-case scenario with mini-
mal simulation load, emphasizing the communication and coordination overhead.

Distributed Simulation with Efficient Fault Tolerance 11

Fig. 4. Components of Fault Tolerance Manager of a Simbot

Table 1. Comparison of the Execution Time for Non-fault-tolerant vs. Fault-tolerant
Distributed Simulators with Different Simulation Times and Low Simulation Load

Total Simulation time (simseconds) Wall clock time (seconds)
non fault-tolerant fault-tolerant

20 0.0067 0.0108
1000 0.162 0.253
10000 1.643 2.478
100000 17.655 22.751

This minimal load represents all the operational overhead as pure communica-
tion, which is typically where fault tolerance could add significant overhead. The
simulation time goes from 20 to 100000 simseconds to measure the wall clock
time. However, it is evident from the results that the difference in execution
times between the versions, even under these conditions, is minimal.

Figure 5 displays the average execution time for each phase of the simulation
(reception, simulation, and sending) for versions without fault management and
with fault management. A minimal simulation load is calculated based on a
model [16] where the efficiency of distributed simulation outweighs centralized
approaches. A simulation load of 0.035 wall clock time seconds is used, when
the load is large enough to make the distributed coupling factor λ > 100. The
negligible difference of 0.269% between both simulator versions underscores that,
in scenarios without faults, there is almost no overhead introduced by fault
management.

Experiments in our test environment indicate that it takes approximately 0.4
seconds to recover from a fault, with 99% of this time spent provisioning a new
node and copying all state to the new replica. For simulations involving large
models, the state copy process constitutes the most significant portion of time
spent in fault recovery. This insight is beneficial as most of the time added by
fault tolerance is concentrated in the fault recovery process (specifically, replica

12 J. Vela et al.

Fig. 5. Execution Time of Simulation with Minimal Efficient Load (0.035 s.)

provisioning and state copy) which occurs only when faults arise, not during
normal operation.

5 Related Work

Fault tolerance techniques in distributed simulations are broadly categorized into
two main strategies: replication and checkpointing [6]. Replication increases the
demand for computational resources and introduces synchronization overhead
to ensure consistency between replicas. Checkpointing, on the other hand, in-
volves storing recovery points and requires synchronization among processes to
determine the recovery moment. Optimistic protocols maintain causality consis-
tency through a rollback mechanism, which restores the simulation to a previ-
ously stored checkpoint when an out-of-order event is received. Consequently, the
choice of fault tolerance technique often depends on the protocol used to main-
tain the consistency of the distributed simulation. Traditional methods generally
incur significant computational costs, storage demands, or synchronization over-
heads.

Recent advancements in fault tolerance for distributed simulations have pri-
marily focused on optimistic protocols, exploiting rollback mechanisms inherent
to optimistic simulations to revert to states prior to faults [1]. These techniques
have occasionally been adapted for conservative simulation approaches as well
[8]. Fault tolerance methods have been developed for specific simulation architec-
tures or frameworks, such as Time Warp [2], GAIA/ARTIS [7], and High-Level
Architecture (HLA). These methods typically require extensive computational
and network resources, which can increase simulation latency and reduce overall

Distributed Simulation with Efficient Fault Tolerance 13

performance. Conversely, techniques designed to preserve performance tend to
be complex and less flexible.

In contrast to the aforementioned systems, which prioritize interoperability,
our approach focuses on efficiency and scalability. Our fault tolerance strat-
egy enhances performance with minimal impact on latency compared to other
methods. By tailoring our approach to conservative simulation, and leveraging
simulation messages and timing, our model achieves greater resource efficiency
and adaptability, avoiding the significant computational and network overhead
often associated with other fault tolerance systems.

6 Conclusion

In this paper, we have presented a replication-based approach to fault tolerance
within distributed simulations, that highlights performance and resource effi-
ciency during non-fault conditions. Our approach adopts a conservative strategy
to optimize resource utilization effectively. Notably, even when fault tolerance
mechanisms are active, a fault-free distributed simulation maintains performance
levels comparable to those with fault tolerance disabled. Additionally, memory
usage remains minimal when replicas perform similarly. Thus, this approach
facilitates cost-effective deployment and execution in cloud environments, ensur-
ing fault tolerance for extended simulations without sacrificing performance or
resource efficiency.

As future work, other failure models, as network partitions and byzantine
faults, could be addressed to enhance the resiliency of distributed simulations.

Acknowledgments This work was co-financed by the Aragonese Government
and the European Regional Development Fund “Construyendo Europa desde
Aragón" (COSMOS research group); and by the Spanish program “Programa es-
tatal del Generación de Conocimiento y Fortalecimiento Científico y Tecnológico
del Sistema de I+D+i ”, project PGC2018-099815-B-100.

References

1. Agrawal, D., Agre, J.: Recovering from multiple process failures in the time warp
mechanism. IEEE Transactions on Computers 41(12), 1504–1514 (1992)

2. Agrawal, D., Agre, J.R.: Replicated objects in time warp simulations. In: Proceed-
ings of the 24th conference on Winter simulation. pp. 657–664 (1992)

3. Arronategui, U., Bañares, J.Á., Colom, J.M.: A MDE approach for modelling and
distributed simulation of health systems. In: GECON 2020 - International Con-
ference on the Economics of Grids, Clouds, Systems, and Services. pp. 89–103.
Springer (2020)

4. Bañares, J.Á., Colom, J.M.: Model and simulation engines for distributed simula-
tion of discrete event systems. In: GECON 2018 - International Conference on the
Economics of Grids, Clouds, Systems, and Services. pp. 77–91. Springer (2018)

14 J. Vela et al.

5. Colom, J.M.: Harnessing structure theory of petri nets in discrete event system
simulation. In: Kristensen, L.M., van der Werf, J.M. (eds.) Application and The-
ory of Petri Nets and Concurrency. pp. 3–23. Springer Nature Switzerland, Cham
(2024)

6. Damani, O.P., Garg, V.K.: Fault-tolerant distributed simulation. In: Unger, B.W.,
Ferscha, A. (eds.) Proceedings of the 12th Workshop on Parallel and Distributed
Simulation, PADS ’98, Banff, Alberta, Canada, May 26-29, 1998. pp. 38–45. IEEE
Computer Society (1998)

7. D’Angelo, G., Ferretti, S., Marzolla, M., Armaroli, L.: Fault-tolerant adaptive par-
allel and distributed simulation. In: 2016 IEEE/ACM 20th International Sympo-
sium on Distributed Simulation and Real Time Applications (DS-RT). pp. 37–44.
IEEE (2016)

8. D’Angelo, G., Ferretti, S., Marzolla, M.: Fault tolerant adaptive parallel and dis-
tributed simulation through functional replication. Simulation Modelling Practice
and Theory 93, 192–207 (2019), modeling and Simulation of Cloud Computing
and Big Data

9. Ferscha, A., Johnson, J., Turner, S.J.: Distributed simulation performance data
mining. Future Generation Computer Systems 18(1), 157–174 (2001), i. High Per-
formance Numerical Methods and Applications. II. Performance Data Mining: Au-
tomated Diagnosis, Adaption, and Optimization

10. Fujimoto, R.M.: Research challenges in parallel and distributed simulation. ACM
Trans. Model. Comput. Simul. 26(4), 22:1–22:29 (May 2016). https://doi.org/10.
1145/2866577

11. Hodgetts, P., Kocharyan, H., Reviriego, F., Santamaría, Á., Arronategui, U.,
Bañares, J.Á., Colom, J.M.: Workload evaluation in distributed simulation of dess.
In: GECON 2021 - International Conference on the Economics of Grids, Clouds,
Systems, and Services. pp. 3–16. Springer (2021)

12. Jha, V., Bagrodia, R.: A performance evaluation methodology for parallel simula-
tion protocols. In: Proceedings of Symposium on Parallel and Distributed Tools.
pp. 180–185 (1996). https://doi.org/10.1109/PADS.1996.761576

13. Murata, T., Wu, Z.: Fair relation and modified synchronic distances in a petri net.
Journal of the Franklin Institute 320(2), 63–82 (1985)

14. Rehman, A.U., Aguiar, R.L., Barraca, J.P.: Fault-tolerance in the scope of cloud
computing. IEEE Access 10, 63422–63441 (2022)

15. Vanmechelen, K., De Munck, S., Broeckhove, J.: Conservative distributed discrete-
event simulation on the amazon ec2 cloud: An evaluation of time synchronization
protocol performance and cost efficiency. Simulation Modelling Practice and The-
ory 34, 126–143 (2013)

16. Varga, A., Sekercioglu, Y., Egan, G.: A practical efficiency criterion for the null
message algorithm. In: Verbraeck, A., Hlupic, V. (eds.) Simulation in Industry:
Proceedings of the 15th European Simulation Symposium (ESS 2003). pp. 81 – 92
(2003)

17. Zhao, W., Melliar-Smith, P., Moser, L.: Fault tolerance middleware for cloud com-
puting. In: 2010 IEEE 3rd International Conference on Cloud Computing. pp.
67–74 (2010)

https://doi.org/10.1145/2866577
https://doi.org/10.1145/2866577
https://doi.org/10.1145/2866577
https://doi.org/10.1145/2866577
https://doi.org/10.1109/PADS.1996.761576
https://doi.org/10.1109/PADS.1996.761576

	Distributed Simulation with Efficient Fault Tolerance

