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Abstract. This paper explores an extended applications’ cost function
to model the willingness of Edge data centres to accommodate addi-
tional users in decentralized edge computing environments. By enhanc-
ing the Marginal Computing Cost per User (MCU) concept, we intro-
duce a dynamic cost factor influenced by the number of users currently
served. Through extensive simulations conducted on the PureEdgeSim
platform, we evaluate the impact of this variable MCU on system perfor-
mance across various configurations. The results reveal a critical trade-
off between cost sensitivity (i.e., collaboration willingness) of Edge data
centres and optimization potential. This work offers insights into user
allocation strategies in heterogeneous edge systems and sets the stage
for future research into non-linear MCU configurations and diverse ap-
plication workloads.
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1 Introduction

Edge computing holds the promise of enhancing the performance of applica-
tions that require high interactivity and low latency by bringing computation
and storage closer to end-users. This paradigm shift provides significant infras-
tructural support for applications that may struggle with the inherent delays
of traditional cloud-based solutions. Edge computing spans a diverse range of
infrastructure, from widespread small data centres to localized computational
units, from general-purpose hardware to specialized GPUs and various accelera-
tors, and from traditional virtual machines to lightweight WebAssembly (WASM,
a complementary technology to Linux containers) containers. This heterogene-
ity necessitates sophisticated strategies for managing the interactions among
all involved entities. The allocation of applications to resources within an edge



2 E. Carlini et al.

computing environment involves complex decisions. These decisions require con-
sensus among various stakeholders and often involve factors beyond straightfor-
ward resource matching, such as political, economic, or other considerations. To
manage these allocations effectively and ensure scalability, many state-of-the-art
solutions avoid relying on a centralized authority [3, 12]. Instead, they employ
distributed or decentralized approaches [11, 1, 2, 7, 4]. However, existing solu-
tions often assume equal participation from all stakeholders, which can overlook
different actors’ unique needs and constraints. The decision to allocate resources
is not solely based on matching resource availability with user requests; it also
involves evaluating various factors that may not be directly related to monetary
considerations. For instance, two parties with identical resources might have
different criteria for hosting decisions based on non-technical factors such as po-
litical or economic interests. To address these complexities, we propose a new
cost function that extends the Marginal Computational Cost of a User (MCU)
concept introduced by Ferrucci, Mordacchini, and Dazzi [5]. This extended cost
function incorporates the “willingness” of a party to accept additional users. This
willingness is modelled as a function concerning the number of users served by a
particular “instance” of a given application in a real-world scenario, as explained
in Section 4. Employing extensive simulations, we show that the MCU is a good
metric to express the “willingness” of an entity to serve additional users. The
experimentation is performed by changing the parameters of the function rep-
resenting such cost, studying the behaviour of a system under variation of such
parameters. Specifically, we demonstrate that our approach effectively balances
the need to minimize resource usage – such as memory, CPUs, storage, and
bandwidth – to reduce the overall cost represented by the MCU function.

The remainder of this paper is subdivided as follows. Section 2 presents the
formal definition and concept of the MCU and the associated propositions. Sec-
tion 3 presents the formal definition of the problem and illustrates the approach
we propose. Section 4 describes the experimental methodology, objectives and
datasets adopted for assessing the proposed solution, the experimental results
achieved, their description and analysis. Finally, Section 5 draws concluding re-
marks and highlights future work directions.

2 Marginal Computing Cost

In economics, marginal cost refers to the change in total cost resulting from the
production of one additional unit of a product, essentially the cost of producing
one more item [10]. Unlike the average cost, which is the total cost divided by
the number of units produced, the marginal cost pertains specifically to the cost
of the last (marginal) unit produced.

When the cost function C is continuous and differentiable, the marginal cost
MC is given by the first derivative of the cost function concerning the quantity
of output Q:

MC(Q) =
∂C

∂Q
(1)
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For non-differentiable cost functions, the marginal cost can be defined as:

MC(Q) =
∆C

∆Q
(2)

where ∆ signifies a change of one unit.

Marginal Computing Cost of a User In this paper, we apply the concept of
marginal cost to define the marginal computing cost per user (MCU). In a previ-
ous study [5], we defined MCU simply as the additional computational resources
required by a service to accommodate one more user. In this study, MCU is
designed to represent the willingness of an Edge data centre to accept additional
users rather than the actual computational cost incurred. This approach allows
for a more flexible and realistic resource allocation modelling in edge computing
environments.

Definition 1. The marginal computing cost per user for an application A, cur-
rently serving k users, measures the willingness to serve x more users in the
form of additional resources needed. It is denoted as MCUA,k,x.

This metric aids in analyzing the resource dynamics of applications. If TCA,k

is the total cost for application A serving k users, the average cost per user is
defined as:

AvgUA,k =
TCA,k

k
(3)

Based on these definitions, we can assess whether serving additional users
(and, thus, the willingness to do it) with the existing application instances or
to create new instances is beneficial. This depends on the relationship between
AvgUA,k and MCUA,k,1. We define ∆cost(A,k,1) as the difference between the
average cost and the marginal computing cost when adding one user:

∆cost(A,k,1) = AvgUA,k −MCUA,k,1 (4)

∆cost(A,k,1) indicates the advantage of serving one more user with an existing
application instance. Therefore, it drives the decision-making process of an Edge
data centre. In fact, if this value is positive, allocating additional users to the
existing instance is beneficial. In case of a request to add x additional users to k
already being served, the decision process can be described as a rule of thumb:

∆cost(A,k,x) =⇒

{
Allocate additional users if > 0,

Reject the users if <= 0,
(5)

3 Problem Definition and Proposed Solution

This paper explores the trade-offs that arise from different collaboration schemes
in a decentralized Edge system. Specifically, we analyze the impact on system
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performance when Edge data centres exhibit varying degrees of collaboration. We
assume that Edge data centres host a heterogeneous set of application instances.
Users are initially assigned to their nearest Edge data centre to minimize latency,
which is the primary factor influencing users’ Quality of Experience (QoE). Each
application has specific latency limits that constrain the eligible Edge data cen-
tres for serving its users.

Algorithm 1 Actions performed by a generic Edge Ei at a time step t

1: Input: N = set of neighbors of Ei

2: Randomly choose a neighbor Ej from N
3: Let Ã be the set of apps having instances in both Ei and Ej

4: if Ã ̸= ∅ then
5: if Wi ≥ Wj then
6: Let Ãl = {Ak ∈ Ã | l(ui,k, Ej) ≤ lk}
7: Let A = {Ak ∈ Ãl | MCUAk,ujk,uik + wj ≤ Wj}
8: if A ≠ ∅ then
9: Am = max

Ak∈A
∆cost(Ak,ujk,uik)

10: Direct the users of uik to use the instance on Ej

11: Turn off the instance on Ei

12: end if
13: else
14: Let Ãl = {Ak ∈ Ã | l(uj,k, Ei) ≤ lk}
15: Let A = {Ak ∈ Ãl | MCUAk,uik,ujk + wj ≤ Wj}
16: if A ̸= ∅ then
17: Am = max

Ak∈A
∆cost(Ak,uik,ujk)

18: Direct the users of ujk to use the instance on Ei

19: Turn off the instance on Ej

20: end if
21: end if
22: end if

Neighboring Edge data centres collaborate by exchanging groups of users of
their running applications, reducing the number of active instances. This ap-
proach reduces overall energy consumption and frees resources to host new users
and applications. Our proposed algorithm dynamically adjusts user allocation
based on real-time resource consumption evaluations at each Edge data centre.
However, each Edge data centre can limit its level of collaboration by setting
constraints on its willingness to accept new users, measured by the MCU func-
tion. An Edge data centre will accept additional users from a neighbour only if
the resulting MCU does not exceed its resource limits. In doing this, we do not
use the MCU as a direct measure of the computational cost but rather as an
indicator of the Edge data centre’s willingness to accommodate additional users.
This perspective enables dynamic adjustments based on resource availability and
collaboration policies among Edge data centres.
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This self-organizing behaviour is implemented using the steps described in
Algorithm 1. We define a function l(uhk, Ea) that checks if the latency limits lk
of an application Ak are met for all the members of its subset h of users uhk when
assigned to Edge data centre Ea; wa represents the current resource occupancy
of Ea, while Wa is its maximum capacity. In Algorithm 1, an Edge Ei randomly
selects a neighbor Ej (line 2 of Algorithm1). They exchange information to
identify the set Ã of applications with active instances on both. They compare
their occupancies, wi and wj . The Edge with lower occupancy checks if it can
host additional users. If Ej has lower occupancy, it calculates the MCU for all
applications on Ei whose users can be moved to Ej without violating latency
limits (lines 6-7). If any application in Ã satisfies MCUAk,ujk,uik

+wj ≤ Wj , the
users on Ei of Ak ∈ Ã that maximises the ∆cost function are redirected to Ej

(lines 9-10), and the instance on Ei is turned off (line 11). The roles are reversed
if Ei has lower occupancy.

4 Experimental setup and evaluation

In this section, we present the results of our study with different MCUs using
PureEdgeSim [9], a simulator based on CloudSimPlus [6] that supports various
Edge-Cloud scenarios. PureEdgeSim allows the simulation of Edge devices, their
characteristics, and the modelling of user-generated requests submitted to these
devices.

For the geographic placement of Edge data centres, we used the EUA Dataset4
from Lai et al. [8]. This dataset includes location information for Edge resources
from the Australian Communications and Media Authority (ACMA), precisely
the positions of cellular base stations in Melbourne. The dataset fixes the num-
ber of Edge data centres at 125, each covering a range of 450 to 750 meters in a
simulation area of about 1.71 km2.

To ensure users are initially served by an application instance meeting their
QoE requirements, we distributed applications and users uniformly. Each Edge
data centre has the same resources, allowing us to study various scenarios by
changing application types and MCU functions, extending the study by Ferrucci,
Mordacchini, and Dazzi [5].

For application footprints, we used the Alibaba cluster-trace-microservices-
v2021 dataset5, containing runtime metrics of microservices. We applied the
k-means algorithm to cluster these microservices into eight reference applica-
tions. This process ensures the selected applications represent different resource
footprints in a modern IDC. The following assumptions apply to our model:

1. Any application type can run on any Edge data centre.
2. There is at most one instance of each application type per Edge data centre.
3. All Edge data centres can communicate and be reached by any user.

4 https://github.com/swinedge/eua-dataset
5 https://github.com/alibaba/clusterdata
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The resources simulated include VCPU s and RAM, representing the number
of Virtual CPUs and memory required by an application type. Each Edge data
centre has a fixed capacity of 36 VCPUs and 48 Gbytes of RAM, based on a ratio
of the capacity used in Alibaba’s cluster traces. In our experiments, we extracted
eight application types from the Alibaba dataset. Each application type Ai is
characterised by a fixed cost Cfix

Ai
(resources needed to start an instance for a

single user) and a variable cost Cvar (for each additional user), which corresponds
to the MCUAi,k,1. We used a uniform distribution of applications and users to
ensure that each user is initially served by an application instance that meets
their QoE requirements. This approach randomly places the same number of
users within the range of each Edge data centre, which then serves them. These
users are further uniformly distributed across different application types. Each
Edge data centre has the same amount of resources, allowing us to study the
behaviour of different application types and MCU functions in various scenarios,
building on the study in [5].

Starting from the work in [5], in this paper we have defined a new different
variable Marginal Computing cost function, in addition to the constant functions
evaluated in the previous work, giving the function MCUAi,1,1 = 1/8 ∗Cfix

Ai
(R),

12.5% of application startup cost, where R is the resource type ( VCPU or RAM
). Such function is a polynomial Marginal computing cost function concerning
the number of yet served users on a specific Edge data centre and is defined by
the following formula:

MCUAi,k,1 = MCUAi,1,1 +MCUAi,1,1 ∗ c ∗ kExp (6)

where c is a predefined coefficient, which represents the growth rate of the
Marginal cost function. In our experiments, c is in {0, 0.05, 0.1}, where c =
0 represents a constant MCU function. Exp represents a predefined constant
exponent that allows the study of non-linear Marginal cost functions in future
works.

Table 1 shows the different application types and the corresponding fixed
costs. Our experiments simulated a scenario with three users generating tasks of
a given application type on each Edge data centre. Given eight application types,
we have 8 ∗ 125 ∗ 3 = 3000 users. Given the different MCU functions studied and
defined for the tests, we considered a total of 3 different scenarios: a scenario
with a constant MCU function and two scenarios with linear MCU functions,
with respectively c = 0.05 and c = 0.1.

Another parameter considered in our simulations is the function used to
simulate and measure the real-time latency, that is, the simulated time, in mil-
liseconds, to send a message over the communication channel, either between a
user (its mobile device, actually) and an Edge data centre or between two Edge
data centres. Such function is the following:

flatency(d,Edgedatacenter) = ChanLatfix + dist(d,Edgedatacenter) ∗ CLat

The function is composed of two parts:



Title Suppressed Due to Excessive Length 7

Table 1: Cfix
Ai

(R) for each application type, for 8 apps tests
Type VCPU Ram (Mbyte)
A1 0.318 898
A2 0.08 763
A3 0.174 833
A4 0.057 466
A5 0.153 1023
A6 0.195 646
A7 0.077 609
A8 0.082 909

– a fixed part, ChanLatfix, which is dependent on the communication channel
type; in our experiments, it is fixed at ChanLatfix = 0.02 seconds and also
includes the component of the latency that depends on the bandwidth of the
channel and the dimension of the packet sent;

– a linear part, proportional to the Euclidean distance dist(d, Edgedatacentre)
between the Edge data centre hosting the instance of the serving application
and the user’s device or Edge data centre d. The CLat predefined constant
represents the latency cost for each unit of distance and is fixed in our tests
at CLat = 0.00006 seconds.

Given the predefined values for ChanLatfix and CLat and the minimum and
maximum distance of a user from the closest base station, we can obtain a range
for the latency belonging to the interval Lat = [20, 42.5] milliseconds inside a
5G cell, which is typical for a cell of such cellular network generation. For each
type of application, we also specified a maximum latency of the network link that
has been chosen a priori randomly, in the range MaxLinkLat = [0.07, 0.1]
seconds.

Our simulation is divided into iterations that occur at discrete time intervals.
Each Edge data centre behaves like an agent that initiates the algorithm once
per iteration. In our scenario, an iteration is started every 30 seconds, and every
experiment has a simulated duration time of 15 minutes, so the number of iter-
ations is fixed to 29. All the various experiment parameters (number of users,
applications, datasets, latency calculation, users and Edge data center distribu-
tions, duration of the experiment, etc.) are chosen to allow a direct comparison
with similar experiments in our previous paper [5].

4.1 Experimental Evaluation: Results

In this section, we present the experimental evaluation results of our proposed
approach, which focuses on the variable MCU presented in 6. This approach
introduces variability in the cost associated with exchanging users, which impacts
the overall resource management and latency within the system. Unlike the fixed
MCU used in previous works, this dynamic approach provides a more realistic
simulation of the varying costs in real-world scenarios: such costs transcend the
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simple monetary value or occupancy of resources and represent the willingness
of the party to add new users to a computation on a certain Edge data centre,
exchanging them from another Edge data centre as explained in Section 3. If the
costs of hosting such users on a unique Edge data centre are more significant
than the costs to maintain such users on the other Edge data centre ( expressed
by the MCU of the exchanged users ), the exchange is avoided, leading to a
reduction in the total costs of the system and, consequently, also a better load
balancing in the workload of the Edge data centres.

This section comprises three parts: the dynamics of active instances, resource
footprint, and latency. For the baseline comparison, we refer to the previous
work [5] when c = 0 and Exp = 1. Our experiments will consider 3000 users, 8
applications, and varying values of c , while Exp is fixed to 1, leading to different
linear Marginal computing cost functions. In future work, further tests with a
value of Exp > 1 will be performed. We limited the number of users to 3000 due
to the computational complexity of the simulator.

Dynamics of the Active Instances The dynamics of the active instances
of the applications hosted by the edge infrastructure are depicted in subfigures
(c) of Figures 1, 2, and 3. When c = 0 and Exp = 1 (linear MCU), the graph
demonstrates a gradual reduction in the number of active instances from an
initial value of 1.0 to approximately 0.5 by iteration 25, consistent with the
findings of the baseline. This indicates that the system efficiently consolidates
users into fewer instances, optimising resource usage. In contrast, for c = 0.05 and
Exp = 1, the number of active instances starts at 1.0 and decreases to around
0.95 by iteration 25. The higher c value results in a less significant reduction
as the cost of moving users increases. When c = 0.1 and Exp = 1, the active
instances remain almost stable around 0.98, showing minimal consolidation due
to the increased cost sensitivity. These results suggest that while our approach
effectively reduces the number of active instances, the impact of the cost factor
c plays a significant role in determining the extent of optimising the total costs,
in accordance to the willingness expressed by the operator in the MCU function.

Resource Footprint The impact of varying MCU on the overall resource foot-
print of the system is shown in subfigures (a) and (b) of Figures 1, 2, and 3. For
c = 0 and Exp = 1, memory usage decreases significantly from 0.16 to 0.12 by
iteration 25, consistent with the baseline. This reduction reflects efficient mem-
ory consolidation with a linear MCU and no additional cost factor. However,
for c = 0.05 and Exp = 1, memory usage starts at 0.13 and reduces slightly to
around 0.125. The presence of a cost factor limits the level of consolidation, as
some memory usage remains necessary to avoid excessive costs from exchanging
users. When c = 0.1 and Exp = 1, memory usage remains stable at around 0.126
with minimal reduction, indicating that higher costs associated with exchanging
users significantly restrict memory optimisation but lead to an increase in load
balancing and, as expressed by the MCU function itself, a reduction in total
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Fig. 1: Dynamics for c = 0 and Exp = 1 - Baseline from previous work [5]

costs for the party. Notably, the CPU usage trends closely mirror memory usage
across the different configurations. As the cost factor increases, the extent of
optimisation diminishes similarly for both CPU and memory, highlighting the
consistent impact of the dynamic MCU function on resource consolidation. As
for the dynamics of the active instances, the presence of a cost factor c cru-
cially determines the given optimisation, helping parties to express concisely the
trade-off between merely resource optimisation and the actual costs represented
by the MCU function.

Latency The latency dynamics are depicted in subfigures (d) of Figures 1,
2, and 3, highlighting how latency is affected by the different MCU configura-
tions. For c = 0 and Exp = 1, latency slightly decreases from 0.49 to around
0.48, showing that latency constraints are well-maintained despite user consoli-
dation, consistent with the baseline. For c = 0.05 and Exp = 1, latency remains
relatively stable, starting at 0.485 and ending at around 0.483. The system effec-
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Fig. 2: Dynamics for c = 0.05 and Exp = 1

tively manages latency while moderately consolidating users. When c = 0.1 and
Exp = 1, latency shows minimal variation, staying around 0.484. The high cost
of exchanging users ensures latency remains stable but limits optimisation ben-
efits. These results demonstrate that our approach effectively maintains latency
constraints even when higher costs limit resource consolidation.

5 Conclusions

This paper presented extended cost functions to model the willingness of edge
data centres to accept additional users in a decentralized edge computing envi-
ronment. The marginal computing cost per user (MCU) concept was expanded
to incorporate a dynamic cost factor based on the number of users served. Ex-
tensive simulations were conducted using the PureEdgeSim platform to evaluate
the impact of this variable MCU on system performance under different pa-
rameter configurations. The results demonstrate that our approach effectively
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Fig. 3: Dynamics for c = 0.1 and Exp = 1

balances the dual objectives of optimizing resource usage through user consoli-
dation, while also reducing the overall cost as represented by the MCU function.
When the MCU exhibited linear growth, systems with higher growth coefficients
showed less significant reductions in active instances and resource footprint over
time. This indicates that a higher cost sensitivity inhibits the extent of optimiza-
tion. Notably, latency constraints were well-maintained even for scenarios with
limited consolidation due to higher costs. This work provides insights into how
modelling the flexible willingness of edge data centres via a variable MCU can
influence the collaborative user allocation process in decentralized edge systems.
It also highlights the trade-off between resource optimization on one hand, and
costs expressed by the MCU on the other. Future work will explore non-linear
MCU configurations and different types of real-world application workloads and
infrastructure topologies to continue assessing this approach under varied con-
ditions. Overall, the proposed solution presents a viable strategy for managing
heterogeneous edge systems with self-interested participants.
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