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Abstract. Edge computing devices have increased in number and capa-
bility over recent years. The ability to process data and execute machine
learning in proximity to data generation and collection sources provides
several advantages over using cloud- based data centers. We describe an
orchestration mechanism that enables edge devices to make more effec-
tive use of energy resources in their proximity – a technique we refer to as
“edge energy orchestration”. A software “orchestrator” can take account
of renewable generation to alter how task execution on edge devices is
carried out. An application scenario is used to illustrate the use of the or-
chestrator in practice, followed by a discussion about how this approach
can be generalized to a broader set of applications

Keywords: energy efficiency · renewable energy use · edge-cloud con-
tinuum · resource management

1 Introduction

An edge resource, positioned nearer to the data source, process data locally, thus
reducing latency and bandwidth consumption. It acts as an intermediary, deliv-
ering faster response times and localized computing power. Ensuring continuous
and efficient operation of the edge presents unique challenges and opportuni-
ties, especially in cases where edge devices are powered using renewable energy
sources such as solar power, hydrogen fuel cells, and wind power. Renewable
energy sources, while environmentally beneficial, are inherently variable and de-
pend on factors such as weather conditions and time of day. This variability
necessitates adaptive strategies to manage power consumption effectively. The
primary goals are to maximize the utilization of edge energy, minimize reliance
on cloud computation and data transmission to the cloud, and make the most
efficient use of the computational capabilities of edge resources.

We explore three primary use cases at the edge: (i) the edge devices func-
tion primarily as a data aggregator, collecting data from various endpoints and
transmitting it to the cloud for processing. This approach minimizes energy con-
sumption at the edge of the network by offloading computational tasks to the
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cloud. However, energy consumption will depend on the size of the data transfer
and will require a high network bandwidth depending on the quantity of data to
be transferred; (ii) the edge devices perform all necessary data processing locally,
providing rapid responses and minimizing the need for data transfer to the cloud.
This use case leverages computational capabilities to maximize edge computing
while relying on renewable energy sources; (iii) a hybrid approach balancing the
computational load between the cloud and the edge. By dynamically partition-
ing tasks based on real-time energy availability and computational demand, this
strategy aims to optimize both energy use and processing efficiency, striving to
minimize cloud computation and data transmission.

Fig. 1. Application execution using an orchestration engine that takes account of re-
newable edge energy sources

As illustrated in Figure 1, we describe an energy-aware orchestrator able to
use locally available energy sources to schedule applications on edge resources.
Such an orchestration mechanism aims to maximize the use of locally available
energy sources before connecting to a power grid. Three types of energy resources
are considered: (i) local renewable generation, which can have variable frequency
and availability. This edge energy source enables devices to directly connect to
these sources, and task execution on edge devices can be scheduled based on
availability; (ii) a local battery which can be charged through renewable sources.
The battery can remove fluctuations in generation from local renewable gener-
ation and provide a more reliable source of (local) energy. Specifying the size
of the battery needed within a given context and monitoring its state-of-charge
variation are two requirements when such a source is used; (iii) alternative local
sources of (more expensive) energy may also be available, such as hydrogen, as
an alternative. The orchestrator needs to create a schedule for data collection
and task execution on available edge resources based on user requests and en-
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ergy availability. The orchestrator can have several utility functions to influence
its operations, such as maximizing the use of locally sourced energy, achieving
a throughput target for task execution, and maximizing the use of renewable
energy sources rather than the battery of the power grid. We investigates meth-
ods for adjusting power consumption at the edge to align with the availability
of renewable energy. Identifying how a balance can be established between com-
putational demand and energy availability, contributing to the development of
more resilient and sustainable computing infrastructures, is a key contribution.
This aspect is covered from two perspectives: (i) monitoring local renewable en-
ergy resources to assess their stability and availability profile over a predefined
time window; this aspect is covered in 2. An accurate estimation enables di-
rect use of local energy resources; (ii) adaptive use of renewable energy at the
edge, smoothing out fluctuations in generation using battery storage, covered in
Section 3.

2 Condition Monitoring of Renewable Energy Resources

The production of renewable energy depends on a complex interplay of factors,
including the natural variability of resources and weather conditions. Beyond
these external influences, the quality and operational condition of renewable
energy infrastructure and storage systems are crucial for determining energy
output. The efficiency and reliability of solar panels, wind turbines, and large
battery storage systems are pivotal. Any faults or degradation in these tech-
nologies can cause significant fluctuations and reductions in energy production.
Therefore, maintaining high standards in the construction, upkeep and moni-
toring of renewable energy infrastructure and storage is essential to ensure a
stable and reliable energy supply. Schenato et al. [10] describe real time in-
sights, conditional monitoring of renewable energy resources, optimizing distri-
bution networks, enhancing building energy efficiency, and efficiently managing
EV charging infrastructure.

Wind energy could benefit from edge processing by improving monitoring
systems, reducing downtime and enabling predictive maintenance. Xu et al. [14]
have devised an embedded multi-sensor architecture to detect incipient short-
circuit in wind turbine electrical generators, that is robust to both false positives
and negatives, and enables the testing of five different sensor settings in three
feature extraction methods and four classifiers. Abdelmoula et al. [2] proposed
a novel framework for monitoring decentralized photovoltaic systems within a
smart city infrastructure – using edge computing to overcome challenges associ-
ated with costly processing via remote cloud servers.

3 Renewable Energy at the Edge

Lowering of the carbon footprint of edge computing systems in a sustainable way
requires both energy efficiency techniques to save power consumption and the
use of renewable energy (green energy) as the primary power supply and brown
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energy (fossil fuel-based energy) as the secondary energy supply. The relatively
small energy demand of edge computing systems positions them to make effec-
tive use of renewable energy. Utilising a microgrid, distributed renewable energy
sources in the same area can be effectively integrated to supply power to local
users with less power loss due to transmission and distribution infrastructure
and match the dynamic local demand with local supply in a more convenient
way. Li et al. [5] proposed an energy management framework that systematically
integrates edge computing and the microgrid so that these two systems can co-
operate and complement each other to enhance the effectiveness and utilization
of energy resources while still satisfying the requirements of IoT applications.
The proposed integration methodology reinforces the sustainability of both mi-
crogrid and edge computing, by virtue of being tightly coupled with a renewable
energy management workflow that enables efficient interaction and collabora-
tion between the systems. For devices operating at the edge, (i) they may be run
by single-use (non-rechargeable) batteries, (ii) they may be run by rechargeable
batteries that store renewable energy or, (iii) they may be directly connected
to the electric grid. However, the most energy-efficient scenario might be deter-
mined by a pareto-style optimization, where a linear combination of these three
different options might turn out to be optimal.

Sustainable edge servers can also utilize photo-voltaic (PV) panels or micro
wind turbines to harvest solar or wind energy from the surrounding environment
to enable the scaling and sustainability. Recent experimental results indicate
that when the solar power density reaches 600W/m2 or the wind speed reaches
11m/s (24.6 mph), a 2m2 PV panel with 20% energy conversion efficiency, or
a 12 kilograms wind turbine with 1.2m2 rotor-swept area can generate more
than 170W of power, which suffices to drive high-performance processors, such
as AMD EPYC 7501 and Intel Xeon Gold 6328HL. Given this ability for energy
harvesting, edge servers can be deployed outside the coverage of electric grids.
A SES (sustainable edge server) needs to dynamically update its computing
power based on the energy harvesting rate to achieve the best computational
performance, since solar and wind-based energy production are not consistent
but highly variable with time. Luo at al. [15] have proposed an optimal comput-
ing power management strategy to maximize the average computing power of
the solar-powered SES in dynamic renewable energy environments. An energy
harvesting model that supports a feedback loop between power consumption to
energy generation of the SES is developed.

Edge computing can reduce energy consumption by cloud providers, as data
transfer from edge devices and computation at a data center can be minimized.
The pervasive nature of edge devices also allows workload balancing, enabling
excess tasks to be offloaded to or from a cloud platform. Such mechanisms help
coordinate resources and associated tasks by providing more intelligent access
to distributed edge resources.
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4 Power-Aware Edge implementation

Edge devices can offload computation to centralized servers to enhance user ex-
perience. However, this migration incurs energy costs. Jiang et al. [4] discuss
offloading strategies, such as local execution, partial offloading [12], and full
offloading [4]. Mao et al.,introduce dynamic computation offloading for mobile-
edge computing with energy harvesting devices. This approach adapts offload-
ing decisions based on the energy availability of devices. By leveraging energy
harvesting information, it optimizes the trade-off between local execution and
offloading, ensuring energy-efficient task execution [7]. Wang et al. propose a
reinforcement learning-based algorithm, in which mobile users learn from net-
work states and historical behaviors to find optimal energy consumption point
and resource allocation policies [13]. By planning offloading base stations for
user devices, they achieve a 28% reduction in total energy consumption while
ensuring balanced traffic management across base stations [6].

These algorithms aim to strike a balance between energy efficiency and sys-
tem performance. In another interesting work, Sun et al., propose a joint of-
floading and computing optimization approach in wireless powered mobile-edge
computing systems. By considering both computation offloading and resource
allocation, their strategy aims to maximize system throughput while minimizing
energy consumption. It dynamically allocates resources to edge nodes, striking
a balance between computation tasks and energy availability [11]. Furthermore,
in another work by Ahvar et al., which underscores the energy efficiency of dis-
tributed computing architectures utilizing foundational energy model and eval-
uates the consumption of cloud-related architectures, including edge computing
[1], our proposed edge energy orchestration mechanism aims to further optimize
energy utilization by dynamically aligning task execution with renewable energy
availability, which leads to enhancing the the sustainability of edge computing
infrastructures. Additionally, the empirical analysis by Mocnej et al. on the im-
pact of edge computing on IoT energy consumption [8] aligns with our objective
to enhance energy efficiency, providing a case study that exemplifies the poten-
tial for edge computing to extend the operational lifespan of IoT devices through
improved energy management.

Energy efficiency in computing devices can be enhanced using various hard-
ware and software modifications, e.g.: (i) underclocking the CPU to reduce the
CPU clock speed; (ii) disabling HDMI output when it is not in use; (iii) turn-
ing off onboard LEDs to conserve power. Utilizing an efficient power supply
and disconnecting unnecessary peripherals, such as USB devices and external
drives, further contributes to lower power consumption. Software optimizations
involve employing a lightweight operating system to decrease system load, e.g.
using Raspbian Lite on a Raspberry Pi can reduce power usage. Power manage-
ment tools like powertop can identify and mitigate power-hungry processes and
settings.

Devices can be configured to reduce their CPU clock speed based on the re-
maining battery power, thereby optimizing energy consumption. This process in-
volves utilizing battery monitoring tools such as upower or acpi to continuously
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track the battery level. Software optimizations play a crucial role in enhanc-
ing energy efficiency. Utilizing built-in power modes is a primary strategy. For
instance, the nvpmodel tool on devices like Jetson Nano allows for switching be-
tween different power modes, such as setting the device to a 5W mode (mode 1)
to reduce power consumption. Similarly, the Jetson AGX Xavier provides more
granular control over power consumption through various power modes that can
be selected using the nvpmodel tool. Enabling Dynamic Voltage and Frequency
Scaling (DVFS) on these devices dynamically adjusts the voltage and frequency
of the processor according to the workload, optimizing energy usage. Addition-
ally, disabling unused CPU cores and services can significantly reduce power
consumption by ensuring that only necessary components are active. Employing
power management tools such as tegrastats enables the monitoring of power
consumption and resource usage, helping to identify and optimize power-hungry
processes.

4.1 Power-aware Orchestration
An edge resource orchestrator (EO) is a software component that dynamically
determines the placement and scheduling of user applications to: (i) improve
utilisation of resources that are in proximity to a user; (ii) meet overall appli-
cation execution constraints such as deadline, network latency and security. We
consider the EO to be hosted on a network component (e.g the first hop router
to a user) to undertake this process. The EO may: (i) schedule tasks on locally
available edge resource(s), or forward tasks to a cloud system; (ii) aggregate/
divide tasks prior to forwarding these to a cloud system, described in [9]. An
EO able to take account of local energy resources is illustrated in figure 1 –
connecting computational devices at the network edge with energy sources. This
component harnesses data from energy generation and storage, in proximity to
edge devices, to influence scheduling of tasks, making most effective use of such
energy. An EO in this instance is able to:

– Approximate task deployment based on resource proximity, as edge resources
are identified based on geographical proximity facilitating advantages related
to cost, latency and security.

– Reduce cost by deploying tasks efficiently: an edge orchestrator can find
low cost edge resources where the overall execution is still compliant with a
quality of service requirement identified by a user, whilst meeting an energy
usage profile.

– Maximize performance: an edge orchestrator can reduce latency associated
with data transfer based on existing placement requirements, i.e. when quality-
of-solution is important, the edge orchestrator can search for high throughput
resources.

5 Edge AI use-cases

We provide a number of scenarios using different types of energy resources – and
associated orchestration.
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Edge devices with single-use (non-rechargeable) batteries: The Internet
of Things (IoT) enables citizens to take informed actions based on data. IoT-
generated data can be categorized into logical layers based on where it is gener-
ated, how it is used, and the evolving roles of data collectors and users: personal,
built environment, district and urban. At the personal level, wearable devices
embedded with sensors, like activity trackers, utilize edge AI to gather and anal-
yse data on various physical activities, e.g. counting steps, estimating calorie
expenditure, tracking sleep patterns, and recording elevation changes, aiding in-
dividuals in monitoring their health. These wearable sensors also leverage edge
AI to detect indicators of critical health events such as strokes or traumatic
brain injuries (TBI) in patients. Moreover, sensors installed on surfaces (such as
battery-powered sofas, chairs, beds) monitor metrics such as heart rate, respira-
tory signals, movement activity during sleep, and sleep quality – offering sleep
analysis and detecting sleep-related issues and identify and prevent poor body
postures that may negatively affect health and lead to discomfort and other
complications. In these applications, sensors have their own battery that powers
data collection. Data collection occurs at limited time intervals, minimising the
amount of energy consumption of the device.
Edge devices with rechargeable batteries: recent support for AI/ML-based ap-
plications on the edge can make use of ultra-low-power devices with an energy
cost below 1mW. This enables the development of many advanced applications
in domains where edge computing is favored due to requirements such as high
mobility, sustainability, low latency, privacy preservation, and continuous avail-
ability.

Optimised LLMs: TinyChat [3] provides an efficient and lightweight system
for Large Language Models (LLM) deployment on the edge, that runs Meta’s
LLaMA-2 model at 30 tokens per second on NVIDIA Jetson Orin and can sup-
port different models and hardware. In this approach, direct embedding of LLMs
into real-world systems, e.g. the copilot services (coding, smart reply and office)
on laptops, in-car entertainment systems, vision-language assistants in robots or
vehicular control interfaces enables users to instantly access responses and ser-
vices without relying on a stable internet connection. Moreover, this approach
often bypasses queuing delays associated with cloud services. Running LLMs on
the edge not only improves user experience but also relieves privacy concerns,
as sensitive data remains localized, which in turn, reduces the potential risk of
breaches. A reduction in power can also lead to restricted memory bandwidth
and limited peak computation throughput on the edge. Moreover, edge devices
have restricted memory capacity. As an example, the NVIDIA Jetson Orin Nano,
characterized by its 8GB DRAM, cannot accommodate even the most compact
LLaMA-2 model in half precision. TinyChat provides a solution for weight quan-
tization, enabling LLM inference on edge devices with limited memory.
Urban Observatories: Building Level: at a building level, electricity com-
panies are implementing smart meters, enabling citizens to monitor their energy
consumption at half-hourly, daily, monthly, and yearly intervals. This data aids
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in comprehending and itemizing electricity charges, pinpointing energy-intensive
appliances by identifying electric usage signature at the edge using federated
learning. Occupancy levels within buildings can now be accurately determined
through innovative methods utilizing mobile phones and WiFi signals. Both do-
mestic and non-domestic building require energy optimization that often involve
deployment and execution of neural networks and genetic algorithms on edge
devices. Additionally, depth-based cameras and edge AI analyse the functional
movements of individuals, such as vulnerable individuals or patients and serve
as alert mechanisms, capable of detecting potentially hazardous events like in-
dividuals on the verge of falling, monitoring walking patterns, and identifying
specific types of dementia.
Edge devices with renewable power sources - Wind/Solar: At a district level, edge
AI utilises the data available around the environment (air quality/temperature,
wind speed/direction, traffic delays), location of EV charging points, car parking
spots and availability to optimize traffic flow, manage waste collection, enhance
public safety, and improve overall urban living conditions. Further, information
about crime maps, neighborhoods, past activity can help to predict crime in near
future.

At the urban level, the integration of edge AI technologies enhances the moni-
toring and management of environmental factors. Authorities often deploy a net-
work of sensors equipped with edge AI capabilities to collect real-time data on
air quality, temperature, humidity, and barometric pressure throughout the city
and its surroundings. This advanced sensor network enables not only the iden-
tification of sources of air pollution, such as power plants, road transport, and
industrial processes, but also the analyses of complex data patterns to predict air
quality levels. By combining air pollution data with meteorological information
authorities can accurately forecast air quality trends and understand how they
are influenced by seasonal variations and weather conditions. Furthermore, edge
AI-driven analytics provide insights into energy demand patterns by processing
meteorological data, including rainfall and solar energy levels. This enables city
councils to optimize energy management strategies and enhance the efficiency of
household energy consumption.

City councils employ sensor technology, including cameras, microphones, and
edge computing, to monitor street activities such as pedestrian and cyclist traf-
fic in intersections and parks. This data helps authorities improve citizen ser-
vices and manage crowds effectively, including coordinating with law enforce-
ment when necessary. Thermal cameras near harbours and water bodies aid in
detecting individuals at risk of falling into the water. Furthermore, data on vehi-
cle purchases and ticketing for various modes of transportation enable transport
authorities to analyse mobility patterns and optimize services, such as adding
more trains to crowded stations. Automatic Plate Number Recognition (APNR)
systems track vehicle movements at city borders and monitor the distribution
of petrol, diesel, hybrid, and electric vehicles. This information informs efforts
to address air pollution and gauge public acceptance of electric cars. Moreover,
edge machine learning is utilized to enhance road infrastructure management,
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with applications like road damage detection improving productivity and re-
ducing costs for city councils. This technology ensures safer road conditions by
addressing issues such as faded lane markings and graffiti on street signs, thereby
enhancing overall traffic safety.
Decentralised AI and variable (decentralised) energy sources: Edge
computing can also enable decentralized operation of AI systems, thereby re-
ducing the need for large-scale data centers. Decentralized AI systems lower the
risk of downtime and improve the reliability and availability of AI systems –
in addition to reducing power requirements of centralised data centers. In edge
computing, the volume of data traversing the network can be reduced greatly,
which in turn can free up bandwidth. This is more efficient from both time and
energy perspective to work with the data on the edge and send the data to the
cloud only if it is really needed there for aggregation and other manipulations.
Moreover, bypassing the requirement for voluminous data storage lowers the
demand for power-hungry data centers. Ait

6 Conclusion

The need for supporting an energy orchestrator at the edge of the network has
been identified. The orchestrator is able to utilise energy generation and usage
“signals" to influence how computational tasks can be scheduled and managed
on edge devices. Whereas previous work has primarily focused on undertaking
partitioning of tasks between edge and cloud resources to meet quality of service
targets (such as latency, throughput, response time, etc.) – this work highlights
the need to also maximise the use of energy generation in proximity to edge
resources.

A number of application classes have been identified that make use of differ-
ent types of energy sources: from non-rechargeable battery use for limited data
acquisition and transmission/storage, to city-scale infrastructure that is able to
harness power generation across a number of locations across a city, able to take
account of various renewables and alternative forms of energy (such as hydro-
gen). The Urban Observatory is used as a common infrastructure to illustrate
these different uses of edge resources. An orchestrator that is able to respond to
varying needs of these application classes, and able to adapt its behaviour is a
key requirement identified in this work.
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