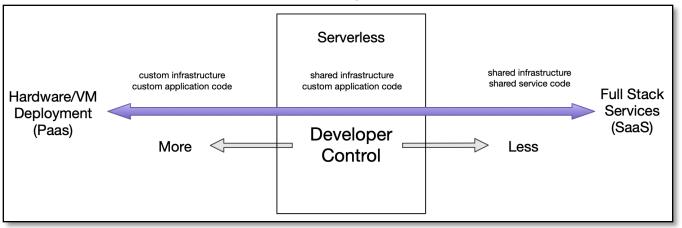


FaaS@Edge

Bringing Function-as-a-Service to Voluntary Computing at the Edge

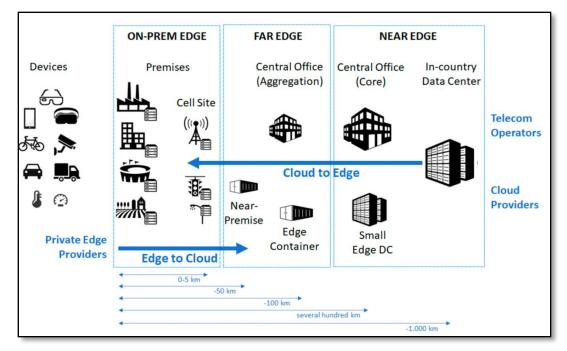
Catarina Gonçalves, José Simão, Luís Veiga



GECON 2024 - 20th International Conference on the Economics of Grids, Clouds, Systems, and Services Rome, Italy, 2024/09/26

Motivation

- The Functions-as-a-Service movement
 - Event-based functions executing mostly stateless operations


Serverless Computing: Current Trends and Open Problems, Research Advances in Cloud Computing. Springer (2017)

- Available as fully managed Cloud Services and Open-source Middlewares
- Usually short lived computations that are more sensitive to memory usage

Motivation

- The Edge Computing movement
 - Heterogeneous set of devices available for computation, particularly on-prem
 - Reduces data transmitted to the cloud, saves bandwidth, enhances privacy

Study on the Economic Potential of Far Edge Computing in the Future Smart Internet of Things, European Commission (2021)

Centralized Architectures

Cloud platforms mostly on centralized architectures

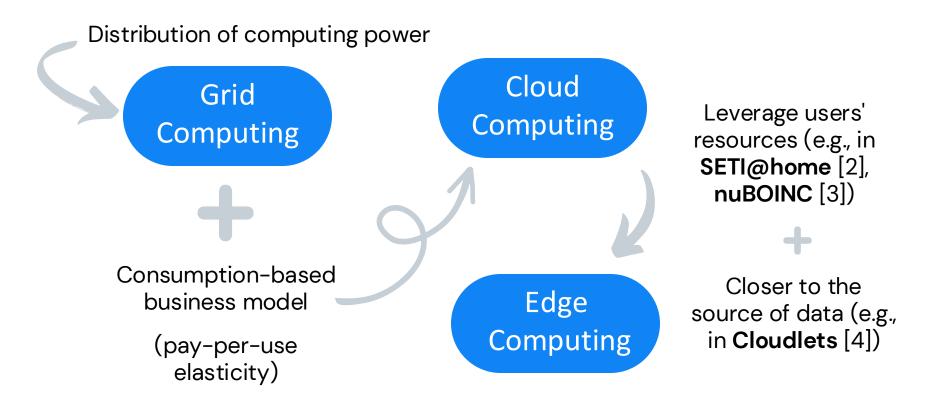
Cloud services depend on resource-intensive environments

Cloud services are not designed to operate on resource-constrained environments

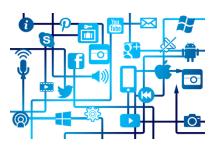
Heterogeneous Devices

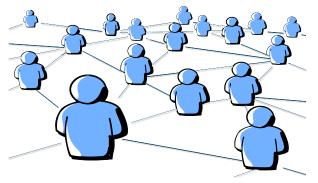
• Edge systems encompass a variety of heterogeneous devices

Distributed data visibility and sharing


Moving away from cloud relies distributed forms of data sharing

Related work

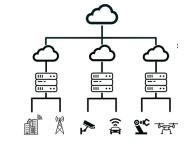

Related work

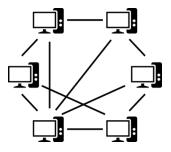

• Centralized vs Distributed data management

Cloud Storage

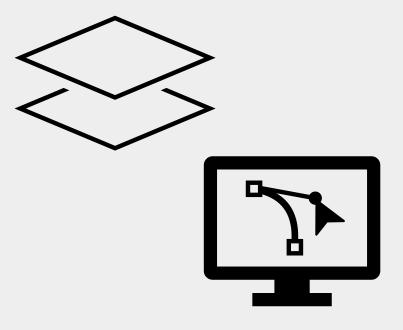
Content Delivery Networks

P2P Data Networks


- Overlay networks where peers can autonomously share their resources
- Efficiently locate and transfer files across peers (often final users, e.g., **IPFS** [6])

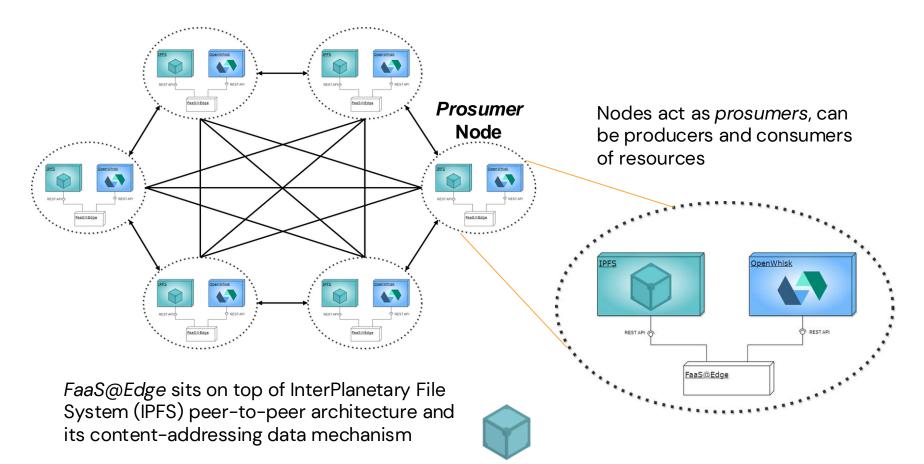

Contributions

• A distributed middleware architecture (algorithms and protocols) leveraging volunteer resources for FaaS deployments on Edge Computing nodes



Function-as-a-Service

Edge Computing


Peer-to-Peer Content Storage and Distribution

Architecture and Algorithms

Architecture

Supplying resources

- Supplier node runs OpenWhisk and calculates a set of *offers* based on free memory and how much it is willing to share
- Announces its memory resources to the network through the IPFS, using Content Identifiers (hash-based labels used to point to material in IPFS)

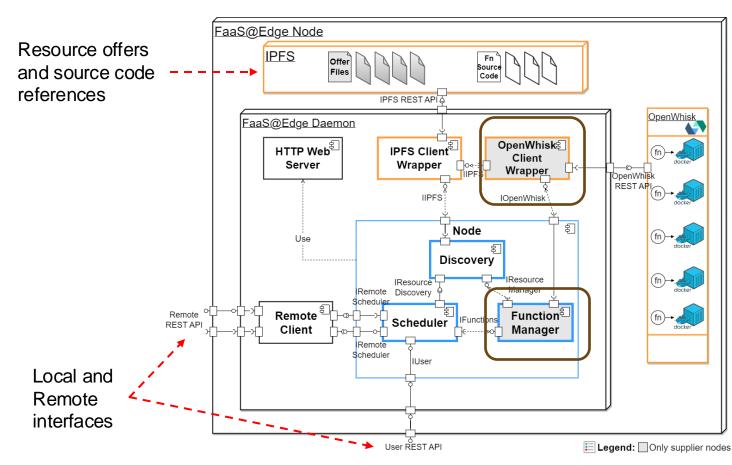
Algorithm 1 Supply Resources algorithm

- 1: function SupplyResources(freeRes, maxRes):
- 2: usedRes ← **ResourcesInUse**(freeRes, maxRes)
- 3: RemoveAllOffers()
- 4: offerCount, offerSize ← CalculateOffers()
- 5: foreach offerCount, offerSize do
- 6: newOffer ← CreateOffer(offerSize)
- 7: supplierActiveOffersMap.Add(newOffer)

Discovery and Scheduling

- Consumer nodes (running the client interface to FaaS@Edge) search the network for potential supplier nodes with compatible offers
- A supplier node confirms or rejects the acceptance to execute the function
- Metadata is updated in the IPFS network
- Concurrency in the process can lead to failures

Algorithm 4 Function Submission Scheduling algorithm


- 1: function **Schedule**(*fnConfig*):
- 2: resNeeded ← fnConfig.Resources
- 3: availOffers ← DiscoverResources(resNeeded)
- 4: availOffers ← RandomOrder(availOffers)
- 5: foreach offer in availableOffers do
- 6: fnStatus ← SubmitFunction(fnConfig, offer, self.IP)
- 7: if **fnStatus = ok** then
- 9: functionsMap.Add(deployedFunction)
- 10: return fnStatus
- 11: return Error("Unable to schedule function")

FaaS@Edge node Architecture

Using the platform

START faasedge **start** -m <memory> [-w]


EXIT faasedge exit

SUBMIT faasedge **submit** <cid> -m <memory> -n <name> -k <kind>

INVOKE faasedge invoke <name> -result -args <json args>

Evaluation

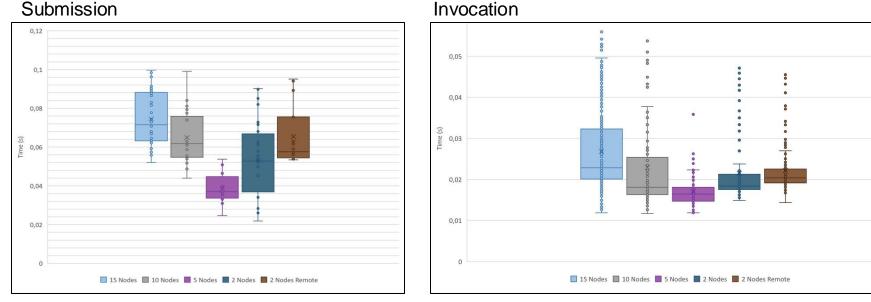
- Workloads characterization
- Testbed
- Latency
 - The time taken to select a node
- CPU and memory
 - Usage at the supplier node
- Request success rate

Example workloads

- Example functions written in Go language, implemented as examples for common use cases of deployments on FaaS@Edge (based on recent research [7])
- Content Hashing: Receive data contents and generate SHA256^{AR} hash. Resulting hash returned to user if requested.
- Database Query: Request data from a database storing information of books in JSON format. User queries database for specific book using ISBN.
- Image Transformation: Get image data using HTTP call and do flip image vertically and returning image data in base64 format.

Testbed

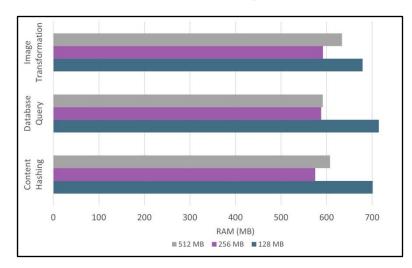
Nodes	Client Nodes	IPFS Control C
2	1	1
2	1 Remote	1
5	3	2
10	4 + 1 Remote	5
15	6 +1Remote	8



Virtual Machine each instance with 2 vCPUs + 2048MB RAM exemplificative of edge devices

Overall small latency for the set of functions and across different number of nodes

17


Usage of CPU and memory

Efficient load balancing with CPU usage decrease as more nodes are added to the system

	95th %ile	90th %ile	75th %ile	Median	Average	Client Avg
15 Nodes	2.60%	2.60%	2.40%	2.20%	2.31%	0.30%
10 Nodes	2.90%	2.90%	2.80%	2.70%	2.70%	0.30%
5 Nodes	4.40%	4.40%	4.30%	2.65%	2.91%	0.40%
2 Nodes	7.97%	7.67%	6.75%	5.20%	5.61%	0.80%

Memory system usage per workload and memory requirement

Success scheduling rate

	Request Success Rate		
Function Type	Submission	Invocation	
Content Hashing	99.49%	100.00%	
Database Query	95.16%	94.98%	
Image Transformation	100.00%	100.00%	
Function Memory			
128 MB	95.24%	97.28%	
256 MB	99.49%	98.73%	
512 MB	100.00%	100.00%	
Total Requests	98.76%	98.69%	

Overall high request success rates for submission (node selection) and invocations (node usage)

Local OpenWhisk submission and invocation

	Total Time (s)				Latency (s)	
Submission	95th %ile	90th %ile	75th %ile	Median	Average	Average
FaaS@Edge	0.1575	0.1483	0.1349	0.1124	0.1150	0.0653
Local	0.0924	0.0918	0.0696	0.0569	0.0602	NA NA
Invocation						
FaaS@Edge	0.2742	0.2606	0.2517	0.0485	0.1173	0.0224
Local	0.1707	0.1675	0.1610	0.0691	0.0934	NA NA

- FaaS@Edge results obtained with 10 node deployment using 256MB function memory and all function types requested by client nodes in cluster machines.
- Remote invocations to the edge nodes are possible at the cost of *slightly* higher invocation times when compared with local deployment

Conclusions and Future Work

- Introduced FaaS@Edge, decentralized system to implement FaaS model in Edge Computing environments
- Function Latency times of invocation requests almost equivalent to local deployment low performance loss in FaaS@Edge
- Good balancing resulting, adding more nodes yields lower execution times of workloads
- Resources in nodes are well occupied; High request success rate
 Future work
- Incentives to prioritize consumers and to reward producers
- Improve execution concurrency of function in each producer node

Thank you!

- 1. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, et al. Serverless computing: Current trends and open problems. In Research advances in cloud computing, pages 1–20. Springer, 2017
- 2. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., and Werthimer, D. Seti@ home: an experiment in public-resource computing. Communications of the ACM, 45(11):56–61, 2002.
- 3. Silva, J.N., Veiga, L., and Ferreira, P. nuboinc: Boinc extensions for community cycle sharing. In 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, pages 248–253. IEEE, 2008.
- 4. Verbelen, T., Simoens, P., De Turck, F., and Dhoedt, B. Cloudlets: Bringing the cloud to the mobile user. In Proceedings of the third ACM workshop on Mobile cloud computing and services, pages 29–36, 2012.
- 5. Pires, A., Simão, J., and Veiga, L. Distributed and decentralized orchestration of containers on edge clouds. J. Grid Comput., 19(3):36, 2021.
- 6. Benet, J. IPFS-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561, 2014.
- Dukic, V., Bruno, R., Singla, A., and Alonso, G. Photons: Lambdas on a diet, in Proceedings of the 11th ACM Symposium on Cloud Computing, ser. SoCC '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 45–59.