
Icarus: a Testing-as-a-Service Utility for Serverless

Functions

Thomas Tomtsis1[0009-0000-2787-3520] and Kyriakos Kritikos2[0000-0001-9633-1610]

1 University of the Aegean, Samos, Greece

ttomtsis@protonmail.com
2 University of the Aegean, Samos, Greece

kkritikos@aegean.gr

Abstract. Testing serverless functions differs significantly from that of conven-

tional software products. Their distributed nature and event-driven architecture

make test development inherently complex. Further, the development of func-

tions and their tests often relies on using tools and software development kits

managed by cloud providers, resulting in minimal control over the test execution

environment and a lack of debugging tools.

As such, we have developed the Icarus RESTful, open-source Testing-as-a-Ser-

vice tool with a transparent and predictable operation, supplying the user with

full control over test creation and execution. Icarus does not burden the user with

details of a function’s deployment across different providers, does not require the

user to write any line of testing code and relies solely on using familiar open-

source and well-known tools to automatically compose and execute functional

and non-functional tests. Its experimental evaluation shows that it scales well

with the user and workload increase, rapidly delivering test results to the user.

Keywords: Serverless, AWS Lambda, Google Cloud Functions, Functional

Testing, Performance Testing.

1 Introduction

Vendor lock-in is one of the biggest issues in Cloud Computing. The functional cost

and the overall quality of an offered service is directly correlated with the business

strategy of the Cloud Provider, thus aligning the Cloud Strategy of an organization with

that of the Cloud Provider. While this offers an easy transition towards the Cloud, even-

tually this approach incurs sizable costs in the event of migration from one provider to

another or in the event of investing in a private infrastructure. The complexity and cost

of data migration and the cost of service and product transfer amongst providers are

critical factors that usually impede Cloud adoption [1].

Serverless Computing is one of the latest developments in cloud computing, where

the development and deployment of software foregoes the need of owning and manag-

ing IT infrastructure. It is based in the Function-as-a-Service (FaaS) model, where the

foundational building block of applications are small, event-driven, single-responsibil-

ity pieces of code, named functions. In the FaaS model, function development must

2 T. Tomtsis and K. Kritikos

utilize the provider’s Software Development Kits (SDKs) and conform to architectural

requirements specified by the provider. At the same time, operating costs and scalabil-

ity vary between providers due to different closed-source implementations of the FaaS

paradigm. To make matters even more complicated, functions commonly utilize several

other vendor specific implementations of supporting services, such as Message Queues

or Serverless Databases, and may rely on proprietary optimization technologies (e.g.

AWS Lambda Snap Start) or supporting solutions (e.g. Azure Durable Functions).

As such, it is evident that choosing a suitable Cloud Provider is paramount for a user

or organization. This process is often complex and requires manually implementing

tests to judge a provider’s adequacy. These tests must be executed in the provider’s

infrastructure, thus incurring extra costs, or be executed in an environment that closely

simulates it. The tests must be developed using the relevant vendor specific SDK’s or

tools. Simulating a vendor’s infrastructure is challenging, since realistic scenarios are

hard to recreate. At the same time, function development and deployment across dif-

ferent vendors requires working knowledge of each vendor’s toolchain and services.

This paper addresses these shortcomings by developing a simple and easy to use

RESTful service. This service, which is aptly named Icarus, simplifies the process of

developing and executing automated tests across vendors and simultaneously abstracts

the complexity of the function's lifecycle management. Users solely provide the loca-

tion of the function’s source code and the test configuration, while Icarus manages the

entire lifecycle of the functions, creates and executes the tests, and produces a test report

document. Our service utilizes the black box testing technique and supports the auto-

mated execution of both functional and performance tests across different cloud pro-

viders and respective function implementations. It has been developed as a Software-

as-a-Service, thus realizing the vision of Testing-as-a-Service (TaaS) [2], and is avail-

able as an open-source software project on GitHub1. By utilizing our service, functional

and non-functional issues may be detected early in the software development lifecycle

without requiring specialized knowledge of vendor specific tools and services.

Compared to the related work, Icarus not only supports both testing kinds but also

does not require the user to write any single line of testing code. Further, it parallelizes

the execution for both functional and non-functional tests. In addition, the testing report

supplies significant new knowledge, especially in the context of performance testing,

as it incorporates a statistical performance model for the tested function, one per each

cloud provider. This model incorporates all factors influencing function performance,

including workload, resources (e.g., main memory size) and location. As such, it is

more complete than other similarly constructed models within the literature. This new

knowledge is of paramount importance not only for better understanding a function’s

performance features across different providers and configurations, but also for facili-

tating the user in the selection of the most suitable provider according to his/her needs.

The remaining of this paper is structured as follows. Section 2 reviews related work.

Section 3 analyses the design and implementation of Icarus TaaS. Section 4 describes

the way Icarus was experimentally evaluated and showcases the respective results. Fi-

nally, the last section concludes the paper and draws directions for further research.

1 https://github.com/ttomtsis/icarus

 Icarus: a Testing-as-a-Service Utility for Serverless Functions 3

2 Related Work

Testing serverless applications has been the subject of research during the last few

years, mainly in the context of function performance testing and benchmarking. A stel-

lar example of this has been the benchmarking suite developed by Copik et al. [3] which

introduces a provider-agnostic FaaS platform model and a set of metrics for analyzing

both function cost and performance. Please note that the work of Copik et al. [3] is

among the few to use a characteristic set of serverless applications to evaluate their

suite and does not simply rely on microbenchmarks, which are quite common through-

out the literature but are not so useful and practical as they rely on very small functions.

Similarly, Maissen et al. [4] offer a benchmarking suite for four well-known FaaS

platforms (e.g., AWS Lambda and Google Cloud Functions) that supports specific

runtimes and relies extensively on Docker containers to manage the functions lifecycle.

Apart from producing performance models, the suite includes a billing costs calculator.

Somu et al. [5]support function chaining (apart from single functions) and multiple

function triggers for python3 functions and rely on JMeter to conduct load tests.

Malawski et al. [6] developed a benchmarking tool, able to execute well known

benchmarks like Linmark, that relies on the Serverless Framework to manage the func-

tion lifecycle.

To the best of our knowledge, Icarus is a complete testing utility for serverless ap-

plications, enabling automated functional testing of serverless functions, a feature not

exhibited so far amongst the already developed tools. Further, Icarus can perform a

wide variety of non-functional testing, not being limited to load tests, supports all avail-

able function runtimes in AWS Lambda and Google Cloud Functions, and utilizes the

novel Terraform CDK for Java to automate the process of deployment, thus not relying

on complex container techniques or cloud provider CLI’s. In addition, Icarus minimizes

the user effort in configuring the function testing as there is a single configuration to

supply for testing the function across multiple providers and regions in contrast to the

other tools. Finally, Icarus can produce more precise statistical functional performance

models by considering all factors that influence function performance, including func-

tion location, memory layout and in the case of Google Cloud Functions vCPU cores.

3 System Development

Icarus was developed using the waterfall model as the project’s requirements were well-

defined and improbable to change, at least during its development. As such, the pro-

ject’s lifecycle included four distinct phases: Requirements engineering, design, imple-

mentation, and validation/testing.

The project requirements were carefully produced and devised by considering the

current gaps in the literature, the actual needs of function developers, especially in

terms of testing, and the current best practices in SaaS development.

4 T. Tomtsis and K. Kritikos

3.1 Functional Requirements

The functional requirements are summarized as follows:

• Provide automated support for both functional and non-functional testing guided by

user-supplied testing configuration

• The user functional testing configuration must supply a suitable test case description

to automatically produce and execute the right tests and as well as generate the func-

tional testing report.

─ Simply speaking, each test case must include the function input to supply as well

as the desired output and HTTP status code.

─ As such, each test case is executed by sending requests over the function based

on the designated output and checking whether the produced output and received

HTTP status code are the expected ones. This checking is incorporated in the re-

spective functional testing report.

• As part of the test execution process, the target function’s lifecycle would be man-

aged by the application, abstracting the complexity away from the user.

• The user non-functional testing configuration includes the test parameters, the func-

tion’s resource configurations and the metrics to be collected per each provider.

─ Test parameters must be specified by summing all user-created load profiles.

Every load profile includes the number of concurrent users, the users think time,

the ramp up, initial start delay of the profile and total load time. By chaining load

profiles, we enable the execution of a wide range of performance tests.

─ A resource configuration includes the function’s memory configuration, the de-

ployed region and in case of Google Cloud Functions the number of vCPU cores.

• During non-functional testing for a specific provider, the system should deploy the

function according to its resource configuration and then execute all its load profiles

─ Each load profile is executed multiple times and then the measurements being

produced must be averaged.

─ All average measurements across all resource configurations must then be fed

into a statistical tool to produce via linear regression the function’s performance

model for the current cloud provider. This model should be stored in the non-

functional report along with all these average measurements associated to their

load profile and resource configuration.

• User (profile) management functions, including user registration and authentication,

must be implemented to enable the system to be used only by registered users.

─ Each user profile should be associated with a set of accounts that the user has on

cloud providers he/she intends to exploit. These accounts are to be used by the

system to conduct function deployments on behalf of the user.

3.2 Non-Functional Requirements

The non-functional requirements set are summarized as follows:

• The system must support multiple concurrent users (at least 50) and respective re-

quests

 Icarus: a Testing-as-a-Service Utility for Serverless Functions 5

• The system should be performant (response time must be less than 5ms per request)

and scalable

• The system should offer a high security level

─ It must support HTTPS

─ It must support basic user authentication with salting-based password hashing

─ It must support OAuth2 user authentication (with Auth0 as the default authenti-

cation provider) for those users that require using external authentication services

─ Access to services should be restricted to authenticated users

─ Each authenticated user should be able to solely see his/her own data

• The system must be developed in form of a RESTful API with high REST maturity

─ Testing must be performed asynchronously as it can take a long time to execute

depending on the testing configuration length and the function execution time

• The system should operate across platforms by exploiting container technology

• The system should use an IaC (Infrastructure-as-Code) tool such that it can support

function deployment across multiple serverless platforms

• The system must support at least the AWS Lambda and Google Cloud Function plat-

forms. By supporting these two platforms we aim to compare the already intensely

studied and industrially significant AWS Lambda with the less studied and gaining

in popularity Google Cloud Functions

─ Icarus must support the novel Google Cloud Functions V2, which allows the man-

ual configuration of vCPU cores. This can lead to the production of more com-

plete statistical function performance models as we take into consideration an-

other resource factor apart from the main memory size.

3.3 Application Design

During the design stage, we followed a top-down approach to the system design, by

modelling suitable UML diagrams.

Context Diagram

Initially, we designed a context diagram (see Fig. 1) to set the boundaries of our

application and define the external systems with which it will interoperate. Icarus would

support two user types, visitors and authenticated users. Auth0 would be used as the

default OAuth2 authentication provider. GitHub would be used when a user specifies a

public GitHub repository as the source of the function’s source code. This is a conven-

ience feature, aiming to ease integrating Icarus into a project’s development lifecycle.

Google Cloud Platform and Amazon Web Services would be used to deploy the func-

tions and their supporting infrastructure and destroy it upon completion of the test.

Component Diagram

Next, we designed our RESTful API’s component diagram, shown in Figure 2, to

designate the API’s internal architecture. Then, other diagrams followed like use-case

diagrams and process diagrams. Due to the imposed size restrictions, we do not have

6 T. Tomtsis and K. Kritikos

the space to show all these diagrams. Thus, we stick to the component diagram to ex-

plain which are the API’s main components, what is their intended functionality and

how they interact with each other in which cases. Finally, we provide some implemen-

tation details, including the URL of the Icarus public repository on GitHub.

Fig. 1. Icarus Context Diagram

Fig. 2. Icarus Component Diagram

 Icarus: a Testing-as-a-Service Utility for Serverless Functions 7

Icarus has been structured in several components to meet the project’s requirements.

The Backbone super-component: Encapsulates basic components required for test

creation and execution. Prior to a test’s creation and execution, Icarus requires a linked

AWS or GCP account (which will be used to execute the tests and deploy the function),

a description of the function to be tested (containing details like runtime, source code

location etc.), and a resource configuration that contains details about the function’s

deployment. Each of these requirements is handled by a respective sub-component.

Function Service manages the Function entities, Provider Account Service manages the

user’s cloud provider accounts, Resource Configuration Service manages the function

configurations (memory layouts, regions, vCPU cores) on the cloud providers, User

Service manages the application’s users, Test Service manages test functionality com-

mon for both functional and performance tests (such as checking for the existence of

the target function’s source code prior to deploying), and Test Execution Service offers

basic support functionality during test execution, such as report production and deletion

of infrastructure after the tests have been completed.

PostgreSQL Database: Icarus uses a (PostgreSQL) database to store the required

entities and user data.

Functional Test super-component: The Functional Test super-component executes

the functional tests. It mainly encompasses the Functional Test Service that handles the

smooth creation and execution of each Rest Assured functional test as prescribed by

the user configuration by using the RestAssured Test sub-component. Functional tests

contain test cases and each test case contains test case members. Icarus creates a Res-

tAssured test per each test case member associated with the functional test. RestAssured

tests’ creation and execution is done concurrently to improve performance.

Performance Test super-component: The Performance Test super-component is re-

sponsible for performance test execution. Similarly to the Functional Test Service su-

per-component, the Performance Test Service sub-component handles the creation and

execution of each performance test as prescribed by the user configuration by using the

Load Test sub-component, which is responsible for the creation and configuration of a

JMeter load test. When executing a performance test, Icarus refers to the resource con-

figurations that have been associated with the test and deploys a number of different

configurations for the function accordingly. The deployment of the different configu-

rations is being handled by Terraform and as such Icarus has little effect on the perfor-

mance of the deployment process. After deployment, Icarus creates a load test for every

resource version of the deployed function and JMeter handles its execution.

Report super-component: The Report super-component manages the successful cre-

ation of a report document, containing the respective test execution’s results. This is

accomplished via subcomponents Report Service and Regression Service. In case of a

performance test, Regression Service performs a linear regression analysis on the test

results and adds the constructed performance model to the report. Report Service man-

ages the creation and storage of a pdf report document by using Eclipse BiRT.

Terraform super-component: The Terraform super-component is used to manage the

lifecycle of the functions, from creation to deletion. This is accomplished through its

subcomponents, Function Deployer, Terraform Configuration and Process Service.

8 T. Tomtsis and K. Kritikos

The Function Deployer’s purpose is twofold, it manages the creation of Terraform con-

figuration files through the Terraform CDK for Java and interfaces with the local Ter-

raform binary to deploy and delete the serverless functions and supporting infrastruc-

ture. The Process Service is a supporting component used by Function Deployer to

execute Terraform commands in the local system using the host’s Terraform binary. As

its name suggests, Terraform Configuration is used to configure Terraform.

3.4 Icarus Implementation

The implementation of the Icarus service as an open-source Maven project relied on

the Java 21 programming language and Spring Boot v3.1.5. framework. As such Icarus

functions as a RESTful web service utilizing Tomcat and listening for requests in port

8080. PostgreSQL v15.5 was used as the underlying database. To manage the lifecycle

of the functions, Terraform v1.6.5 and the Terraform CDK for Java v0.19.0 were used.

For automated performance testing, we chose the well-known JMeter v5.6.2 tool

whereas for automated functional testing we relied on RestAssured v5.3.2. We utilized

Eclipse’s BiRT v4.8.0 for report generation.

4 Experimental Evaluation

The evaluation process focused on checking the system response time and its behavior

when executing functional tests with varying workload. The function tested took the

form of a pre-deployed ‘hello world’ type function deployed in AWS Lambda. The

target function was warmed up before executing the test plan, enabling to exclude cold

start delays incurred by AWS Lambda from our test results. In addition, the AWS re-

gion where the function was deployed had a sufficient instance number (1000 instances)

to not incur throttling. Icarus and its PostgreSQL database were deployed in the local

system. Further, user requests were authenticated by Icarus using Basic Authentication.

Following this setup ensured that we were studying the internal performance character-

istics of Icarus more closely and excluded any other moving parts and external systems.

Icarus was evaluated in a laptop (local system) with 8GB RAM and an Intel Core i5-

1135G7 processor running Windows 11. We used the JMeter load testing tool with the

Measure-Command PowerShell utility. JMeter executed a test plan in headless mode

and the Measure-Command utility measured the execution time of the command.

We focused on two distinct scenarios as part of the evaluation process. The first

scenario studied the application's performance under a varying number of concurrent

users. Every user executes a functional test containing a single test case that checks if

the function’s response matches the string ‘Hello World’. For every configuration of

the first scenario (exact number of concurrent users), we executed the test thirty times

and removed the two biggest and smallest execution times. Afterwards we divided the

result by 26 and successfully calculated the average response time experienced across

all users for that configuration of the scenario. We studied this scenario starting with

ten concurrent users and scaling upwards to fifty concurrent users, in steps of ten.

 Icarus: a Testing-as-a-Service Utility for Serverless Functions 9

The second scenario studied the application's performance under a steady number of

thirty concurrent users with varying workload configurations. Each workload configu-

ration consists of a steady number of test cases. Same as before, for every workload

configuration the scenario was executed thirty times. We removed the two biggest and

smallest execution times and divided the result by 26 to calculate the average response

time per user experienced across all users for that workload configuration of the sce-

nario. We studied this scenario starting with ten identical test cases and scaling upwards

to forty test cases per user, in steps of ten.

To account for JMeter’s initialization times, we conducted further experiments to

measure the average initialization time of JMeter and thus redact it from the calculated

average execution times. We created an empty test plan containing a thread group with

zero loops and used Measure-Command to study JMeter’s behavior. After conducting

this experiment thirty times and calculating the average initialization time, we redacted

it from the measurements we had obtained from both scenarios.

Below, we showcase the two experiment results in two graphs. Scenario A represents

the first scenario, where we study the effects of the increasing concurrent user number,

whereas scenario B represents the second scenario where we study the effects of thirty

concurrent users with varying workloads. By studying the graphs, we can clearly see

the linear increase in response time in both scenarios. This indicates that Icarus scales

well with the increase of its workload.

Fig. 3. Performance Test results for Scenarios A (left) and B (right)

5 Conclusions

In this paper, we presented the Icarus TaaS, a complete testing service that touches on

a subject often ignored in related FaaS tools, the functional testing of serverless func-

tions. Further, Icarus covers the non-functional function testing by also having the abil-

ity to produce more complete function performance models than those of the existing

FaaS tools, for both the intensely studied AWS Lambda and the under-researched

Google Cloud Functions, through incorporating resource features, such as vCPU cores

and main memory size, as well as the function (deployment) location.

10 T. Tomtsis and K. Kritikos

We aim to further expand the base functionality of Icarus by supporting multiple

trigger types, complex function chains and serverless applications, thus covering a

wider spectrum of serverless applications and use cases. In addition, we plan to support

automated test case data generation as currently such data are given by the user in the

test configuration. All these new features will provide more test automation and thus

greatly reduce the test effort of the end users who will then be able to focus mainly on

the core development task of function / serverless application implementation.

References

1. Opara-Martins, J., Sahandi, R., Tian, F.: Critical review of vendor lock-in and its impact on

adoption of cloud computing. In: International Conference on Information Society (i-Society

2014). pp. 92–97. IEEE, London, United Kingdom (Nov 2014).

2. Gao, J., Xiaoying Bai, Wei-Tek Tsai, Uehara, T.: Testing as a Service (TaaS) on Clouds. In:

2013 IEEE Seventh International Symposium on Service-Oriented System Engineering, pp.

212-223. IEEE, San Francisco, CA, USA (2013).

3. Copik, M., Kwasniewski, G., Besta, M., Podstawski, M., Hoefler, T.: Sebs: A serverless

benchmark suite for function-as-a-service computing. In: Proceedings of the 22nd Interna-

tional Middleware Conference, pp. 64-78. ACM, Quebec City, Canada (2021).

4. Maissen, P., Felber, P., Kropf, P., Schiavoni, V.: FaaSdom: a benchmark suite for server-

less computing. In: Proceedings of the 14th ACM international conference on distributed

and event-based systems, pp. 73-84. ACM, Montreal, Quebec, Canada (2020).

5. Somu, N., Daw, N., Bellur, U., Kulkarni, P.: Panopticon: A comprehensive benchmarking

tool for serverless applications. In: 2020 International Conference on COMmunication Sys-

tems & NETworkS (COMSNETS), pp. 144-151. IEEE, Bengaluru, India (2020).

6. Malawski, M., Figiela, K., Gajek, A., Zima, A.: Benchmarking heterogeneous cloud func-

tions. In: In: Heras, D.B., Bougé, L., Mencagli, G., Jeannot, E., Sakellariou, R., Badia, R.M.,

Barbosa, J.G., Ricci, L., Scott, S.L., Lankes, S., Weidendorfer, J. (eds.) Euro-Par 2017: Par-

allel Processing Workshops, vol. 10659, pp. 415–426. Springer International Publishing,

Cham (2018).

