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Abstract. Stream Processing is a very effective predominant paradigm
for data processing. It provides an efficient approach to extract informa-
tion from new data, as the data arrives. However, spikes in data through-
put, can impact the accuracy and latency guarantees stream processing
systems provide. This work proposes data sampling, a type of data re-
duction, as a solution to this problem. It provides a user-transparent
implementation of two sampling methods in the Apache Spark Stream-
ing framework. The results show a reduced amount of input data, leading
to decreased processing time, but retaining a good accuracy in the ex-
tracted information.

1 Introduction

Big Data has brought a revolution to data processing. With commodity hardware
becoming cheaper and widely available, constraints on the amount of data to be
collected have been lifted. As a result, useful information, patterns and insights
have become far easier to extract. A variety of Big Data processing is on-the-fly
data processing called stream processing.

For stream processing systems to provide an efficient service, data needs to be
processed as fast as it arrives. When a sudden peak in data throughput occurs,
greater than the processing capabilities of the system, several problems arise.
When possible, the system will utilize additional computing resources. Next, if
the available resources are not enough, the system will try to queue new data
while it processes available data. This in turn may lead to a delay in the results,
lowered accuracy from an overflowing queue, and an eventual crash of the system.

An obvious solution to the problem is to scale out by adding machines to the
system. Next, changing the size of the data to be processed may be attempted [5].
Another approach is to use controlled data reduction methods like load shedding
[20,21,19] or sampling [12,9], alternatives to compression [16].

However, additional machines may be unavailable or too costly to provide,
and altering the input data size would increase latency. Although effective, load
shedding may skew the data distribution lowering the result accuracy. In con-
trast, sampling decreases data size by producing a subset retaining desired char-
acteristics of the whole data set. This provides lower resource requirements, lower
latency, but maintains a good result accuracy.

This paper contributes to the utilization of sampling in stream processing
systems. We implemented Strainer, a stream processing sampling framework.
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Coupled with the Apache Spark Streaming framework, in Strainer we employ
two sampling algorithms. We evaluate the advantages and cost this usage of
sampling techniques incurs in the accuracy guarantees of systems like Spark.
The result is an early-stage data reduction in the workflow producing a smaller
processing load, shorter execution times while keeping a limited result error.

The remainder of this paper is structured as follows. Section 2 presents the
necessary background to frame the paper. Section 3 details the design and im-
plementation of Strainer, and its evaluation follows in Section 4. Then, Section 5
reviews and contrasts relevant work within the state-of-the-art, and Section 6
concludes the paper and gives insights on future directions.

2 Background and Assumptions

Sampling methods and their application in Big Data are initially thoroughly
analysed in earlier work [4]. As their work suggests, among the varied methods
of data reduction available, sampling provides an intuitive and straightforward
way to obtain a smaller subset of the data with the same structure. Thus, they
show it a valid choice as a method to reduce data for real-time data processing.

Apache Spark Streaming is a mature data processing framework, speeding
up processing times by performing in-memory processing. Furthermore, Spark’s
modular design allows it to integrate with a multitude of different technologies,
from Hadoop’s HDFS for distributed storage, YARN or Apache Mesos for re-
source management, to providing libraries for connecting with data sources like
SQL, Apache Kafka, Cassandra, Kinesis, as well as Twitter.

As seen in Figure 1, in Spark Streaming, the data is admitted into the system
through the Receiver module. The Receiver provides the flexibility to connect
with various data sources. Moreover, it allows data items to be pre-processed
before being admitted into the workflow. Through the Receiver Supervisor, the
Receiver gathers the data items into blocks and then stores them into memory.
Furthermore, the Supervisor generates block meta-data and then inserts it into
a queue at the Receiver Tracker. Next, Spark Streaming utilizes an interval to
build a small batch from the enqueued meta-data. The length of this batch
interval determines the size of the micro-batches which are then processed by a
user-defined streaming application.

While micro-batches are the reason Spark does not provide “true” real-time
stream processing, they are useful to us. Spark Streaming abstracts the data
stream into micro-batches, so each micro-batch can be processed as a regular
Spark batch application, and have a known size to be considered when sampling.

3 Framework Integration and Sampling Techniques

3.1 Framework Integration

The micro-batch abstraction mentioned in the previous section is what allows a
seamless integration of Strainer with Spark Streaming. Figure 1 shows the sam-
pling framework implemented as a wrapper at the Receiver module. Strainer
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Fig. 1: Basic Architecture of Batching module in Spark Streaming

intercepts each data item before it is stored and passes it through a class im-
plementing a sampling algorithm. Next, before the batch interval passes, the
framework outputs the sampled items to the Supervisor. It uses the sampled
data to generate blocks, continuing a standard batching operation. Thus, with
Strainer the pre-existing functionality of the batching module remains unaltered.

3.2 Sampling Techniques

Before the implementation, several sampling techniques were considered. The
following criteria were used for selecting the sampling methods [4,11]. The algo-
rithms needed to implement the reservoir scheme, providing a one-pass sample
over an unbounded data stream. The reservoir sampling scheme provides a fixed
size sample with a single pass over an arbitrary sized data stream. However,
reservoir scheme algorithms use uniform sampling which can skew the data dis-
tribution of the sampled set. Thus, algorithms that use techniques that can
counter this data distribution skew were required. Finally, an algorithm needed
to provie a bounded error guarantee in order to be selected.

Congressional algorithm [1] Congressional sampling is an efficient method of
performing sampling when data is partitioned in groups. A considerable number
of data processing applications group data by key. The MapReduce paradigm is
a relevant example of this. Furthermore, Congressional sampling is a hybrid of
uniform and biased sampling. This guarantees that both large and small groups
will be represented in the sample, preventing data distribution skew. Algorithm
1 shows the algorithm for Congressional sampling.

As can be seen on lines 5, 6 and 8, in the first stage, the algorithm performs
three types of sampling. First, it performs a house (standard uniform reservoir)
sample. Next, a senate sample is performed, which assigns an equal slot of the
sample size to each group. Finally, a grouping sample is performed for each
attribute in the group-by set, where each attribute’s “grouping” is assigned a
sample slot proportional to the size of the grouping in the data set. Second, in
the grouping sample, the slot size for each group is recalculated (line 13).

Equation 1 shows the equation, where S is the sample size, mT is the number
of distinct groups, Ng is the number of items for the attribute and Nh represents
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Algorithm 1 Congressional algorithm

1: initialize(sampleSize, group)
2: sampleCount← 0
3: houseSample← ∅
4: senateSample← ∅
5: groupingSample← ∅
6: for all item ∈ dataStream do
7: doHouseSample(item)
8: doSenateSample(item)
9: for attribute ∈group do
10: doGroupingSample(item)
11: end for
12: end for
13: getFinalCongressionalGroups(groupingSample)
14: calculateSlots(houseSample,senateSample, groupingSample)
15: scaleDownSample()

the number of items in the distinct group. In the next stage (lines 14 and 15), the
group sizes of the uniform, senate and grouping samples are evaluated and the
final slot size for each group is calculated from the house, senate and grouping
samples.

GroupSize = (S/mT ) ∗ (Ng/Nh) (1)

In Equation 2, S is the sample size, maxg∈GSg is the size of the largest slot
for a group from the house, senate and grouping samples and it is divided by
the sum of all the slot sizes for that group. Finally, each group is re-sampled
with reservoir sampling to generate a sample slot with the new size. The house
sample allocates more space for larger groups. On the other hand, the senate
sample allows smaller groups to enter the sample. Finally, the grouping sample
optimizes the separate attribute representations inside each group.

SlotSize = S ∗ (maxg∈GSg/
∑

sampletype

maxg∈GSg) (2)

Distinct Value algorithm [7] As its name suggests, the Distinct Value sam-
pling method approximates the number of distinct values of an attribute in a
given data stream. As with the previous algorithm, determining the distinct
values of a certain attribute is frequently used in the optimization of the com-
putation flow. The DV sampling algorithm provides a low, 0-10% relative error,
while providing a low space requirement of O(log2(D), where D is the domain
size of the attribute.

Algorithm 2 presents the Distinct Value algorithm. It requires two additional
parameters besides the sample size. The second parameter is the maximum sam-
ple slot size per value, called the threshold. The third parameter is the domain
size, representing the number of possible values that can occur.

The algorithm works as follows. As each data item arrives, the domain size is
used to generate a hashed value of the data item. Next, if the hashed value is at
least as large as the current level, an attempt to put the item in the appropriate
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Algorithm 2 Distinct Value algorithm

1: initialize(sampleSize, threshold)
2: level← 0
3: sampleCount← 0
4: Sample← ∅
5: CountMap← ∅
6: for all item ∈ dataStream do
7: hashV alue← dieHash(item)
8: if hashV alue ≥level then
9: if Sample(hashValue) <threshold then
10: Sample(hashValue).add(item)
11: CountMap(hashV alue) + +
12: sampleCount + +
13: else
14: Sample(hashValue).sample(item)
15: end if
16: end if
17: if sampleCount>sampleSize then
18: sampleCount− =Sample(level)
19: Sample(level).remove
20: level = level + 1
21: end if
22: end for

hash value slot is performed. If the slot size is smaller than the threshold value,
the item is simply placed in the slot. Otherwise a uniform sample is performed
which can result in the new item replacing an item currently in the slot. When
the items in the sample exceed the sample size, the slot whose value equals the
current level number is removed from the sample and the level is incremented.

By randomly mapping the attribute values to hashed values and only allowing
hashed values equal or greater than the current level to enter the sample, the
algorithm ensures that the sample contains a uniform selection of the scanned
portion of the data stream. As an addition, the threshold value keeps the level
from frequently incrementing and skewing the data distribution.

4 Experimental Evaluation

For the experimental evaluation, we employed an instance of a server represen-
tative of elements in typical cloud deployments. The server runs on an 8-core,
2.93GHz Intel i7 processor with 12GB of RAM, using 64-bit Ubuntu Server. The
system was implemented on Apache Spark, while the data streams were created
using the Netcat Linux command-line tool. For measuring the maximum heap
memory usage, a light-weight console application was used, called Jvmtop.

Metrics and Benchmarks. In order to understand the gains of the imple-
mented system, four metrics were used. Two are performance metrics, evaluat-
ing the speed-up in processing time and the variation in memory consumption.
The other two are error metrics, estimating the relative error in the generated
sample and the relative error in the results of the benchmark applications. Two
benchmark applications were used, usually employed in streaming benchmarks.
The first is one that provides the most used payment type in New York taxis.
The second provides the country with most customers of an online retail website.
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(b) Taxi Log Speed Up

Fig. 2: Processing time speed up benchmark applications
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(b) Taxi Log Error

Fig. 3: Result error plots for benchmark applications

Results. The speed-up in processing time for both applications is shown in
Figure 2. For the Online Retail application (2a), both algorithms show a high
speed-up in processing time (20-30%) for sampling sizes of 10, 25 and 30%, but
the 2 and 5% sample shows that sampling is rendered ineffective for too small
data inputs. However, the Taxi log application (2b), which has a much smaller
domain size for the target attribute of the sampling, shows a steady decrease of
speed-up, providing high values for the smaller sample sizes.

On Figure 3 the relative error of the application results is presented. As can
be seen on Figure 3a, the algorithms in the Online Retail application maintain
steadily decreasing error with a maximum of 20%, while the error in the Taxi
log application (Figure 3b) is kept bellow 1%. Exceptions are the 2% sampling
sizes, where, because of the greatly decreased data size, the differences in the
results are much more noticeable.
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(a) Retail Maximum Memory
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(b) Taxi Log Maximum Memory

Fig. 4: Maximum memory usage variation for benchmark applications

The plots in Figure 4 detail the maximum heap memory usage of Spark
Streaming during the execution of the benchmark applications. As can be seen,
the sampling runs actually consume more memory for most of the sample sizes.
The reason behind this is that both algorithms obviously require some constant
extra amount of memory for the data structures they use for maintaining the
meta-data of the sampled elements; meanwhile, all events are still injected in
Spark even if not fully processed, with the garbage collector sometimes freeing
their memory only lazily in the background. An exception is the DV algorithm
for the Taxi log application, where because of the smaller domain size, the DV
sample actually performs better. This is affected by the threshold value which
greatly impacts the slot sizes and increment frequency of the level value, thus
increasing or decreasing the memory usage.

From the evaluation metrics, it can be summarized that the system can
provide significant gains in processing time for the sample sizes between 5 and
25 percent, while maintaining a low error rate. However, this is done at the cost
of additional memory consumption.

5 Related Work

Strainer is an approximate computing system that intersects data reduction with
data processing platforms. There are several notable works in these areas.

In the area of sampling, several one-pass sampling algorithms can be adapted
to streamed data. Reservoir sampling [22] is a uniform sampling algorithm. It
provides a bounded error, but may skew data distribution. Count and Weighted
sampling [8,2] use biased sampling methods. However, both have no error bounds.
Furthermore, Weighted sampling introduces overhead information about the
weights of the data items in advance.

Currently, there is an abundance of data processing platforms. Apache Flink,
Storm and Samza offer stream processing libraries. In contrast to Spark, they use
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a streaming dataflow engine which performs true streaming, thus immediately
processing each data element. However, this becomes an obstacle when trying
to sample data, since most sampling methods need to first build a sample set.

Approximate computing systems use two approaches in data reduction. Works
on Aurora and Borealis [20] tightly integrate load shedding operators that dis-
card tuples throughout their operation paths. Another work on Aurora/Borealis
[19] groups tuples into blocks, which then selectively discards. Comparably, the
system in [21] divides the input data stream into windows which are probabilisti-
cally discarded. Like Strainer, IncApprox [12] uses sampling to reduce the input
data. However, it additionally utilizes incremental computing to increase the
efficiency of the system. Finally, ApproxHadoop [9] uses multi-stage sampling
as the first stage of data reduction, and adds task dropping as a load shedding
approach for the second stage.

In the realm of big data analytics, a plethora of research has been out-
lined [15], delving into the intricacies of resource efficiency within large-scale
data processing clusters. A relevant contribution to this field is the utilization
of hidden Markov models to predict frequent patterns and approximate compu-
tation, a method that has achieved a notable level of accuracy as discussed in
[13]. Additionally, the study presented in [18] introduces a model for predict-
ing applications’ resource allocation needs by using a priori knowledge, which
is also beneficial for effective resource mapping. Another significant approach is
found in [10], where the focus is on the estimation of actual available resources to
prevent scenarios of resource wastage. Furthermore, the innovative application
of game theory in managing container allocation for streaming applications, as
explored in [17], presents a unique perspective in resource management. Each of
these studies offers distinct insights and solutions to the challenges associated
with resource management in the context of big data.

Other approaches employ parameter tuning [14] to Map-Reduce and Spark
workloads, or employ machine learning in order to determine how to ensure
a specific error bound in continuous Map-Reduce workflows [6] while delaying
reexecution as much as possible when new input data arrives. This has also been
attempted in iterative or continuous graph processing [3].

Overall, none of the previous works employ sampling as a means to ensure
application quality-of-service during overcommit/overallocation situations, in a
way that does not risk dropping relevant, yet possibly under-represented, types
or values of data (as uniform-based sampling approaches typically employed in
load-shedding can incur in).

6 Conclusion

Strainer implements the approximate computing paradigm by leveraging the
advantages of sampling as a data reduction technique. It utilizes the modularity
of the Apache Spark Streaming to create a seamless merging of this established
data processing framework with the Congressional and Distinct Value sampling
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methods. Thus, it provides a user-transparent framework for the development of
approximate computing applications.

The experimental results indicate that the system can be employed in data
stream environments and provide a faster execution time while maintaining a
low error bound. Although it is fully functional for stable data streams, the
introduction of a variable arrival rate in the data stream may impact the accu-
racy of the results. This is because the sample size would maintain a fixed value
while the amount of data fluctuates. Implementing a self-adjusting sampling size
depending on the error measurement and processing time would alleviate this
problem. Finally, sampling could be performed in a dedicated component with
custom memory management or more frequent GC to promote memory savings.
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