

Collective Privacy Recovery

Data-sharing Coordination via Decentralized Artificial Intelligence

Evangelos Pournaras

Trustworthy Distributed Intelligence

An Unforgiving Race of Power Privacy

World War II

of Jewish found & killed

Netherlands

What made such huge difference?

World War II

75%

of Jewish found & killed

Netherlands

What made such huge difference?

France had excluded sensitive information from census for privacy reasons

Risks of Privacy Loss & the Privacy Paradox

How many installed apps are needed to identify 91.2% of individuals?

How many spatio-temporal GPS records are needed to identify 95% of individuals?

From 90% of individuals who give up privacy, how many intend to protect it?

Risks of Privacy Loss & the Privacy Paradox

How many installed apps are needed to identify 91.2% of individuals?

How many spatio-temporal GPS records are needed to identify 95% of individuals?

From 90% of individuals who give up privacy, how many intend to protect it?

76% See [4,5]

Implications of Collective Privacy Loss

Environmental impact

Data centers consume too much energy: faster growth of unprocessed data than Moore's law predictions

Privacy loss resembles an ecological disaster with the global significance of climate change

Surveilance stress & anxiety [7]

Social impact

Algorithmic biases, discrimination, censorship, loss of freedoms

Political impact Influence of election results

Privacy is not only an individual right...

... it is also a shared value in the digital era!

What are we missing here?

Collective arrangements for sharing data that provide a *minimum quality of services* for *maximum privacy*

who is sharing to whom, when, how much of what data & for what purpose?

Data as a scarce resource? Minimizing both excessive & insufficient levels of data Share data under the doctrine "as little as possible, as much as necessary"

Data collectives

Privacy Loss is Coordination Deficit A Toy Example

Existing Status Quo of Data Sharing

Risk of identity inference [4]

Is not this data (far most times) excessive?

Turn on your GPS?

Default: Share all your personal data

Reduced risk of identity inference [4]

Or.. selectively turning on & off your GPS?

Collective arrangement: Share `as little as possible, as much as necessary'

Reduced risk of identity inference [4]

Or.. selectively turning on & off your GPS?

Collective arrangement: Share `as little as possible, as much as necessary'

A Very Simple but Hard Idea to Materialize in Practice

How to **automate & scale up** such collective arrangements of data sharing?

Coordinated data sharing:

A techno-socio-economic problem of computational complexity

Modeling as a *multi-agent discrete-choice optimization problem* **Solving** using *decentralized, privacy-preserving* & *efficient AI*

Related Work

Security & cryptography: differential privacy, multi-party computation, k-anonymization

Limited use of shared data

Federated learning

No coordination element for data-sharing optimization

Personalized privacy assistants

Privacy-intrusive themselves

Methodological limitations

Survey studies, limited realism, no causal inference

A Living-lab Real-world Experiment An inter-disciplinary study on coordinated data sharing

(4) Coordinated data sharing Three options to choose from:

- One intrinsic data sharing
- Two rewarded data sharing

Data Collection Infrastructure

Participants

Data Collectors

Data Collection Infrastructure

	ETH Decision Science Lab	Out-of-lab Experimentation	ETH Decision Science Lab
Timeline	1 st Day	+48 hours	4 th Day
-	Entry Phase	Core Phase	Exit Phase
Lab pool	 Instructions & consent App installation Entry app survey 	 Daily app use Data-sharing choices Sensor data sharing 	Exit web survey Interview Compensation
Max 75 CHF	Show up payoff: 10 CHF Participation payoff: 15 CHF	App use payoff: 2.5x2 CHF Data-sharing rewards: 15x2 CHF	Show up payoff: 10 CHF Participation payoff: 5 CHF

1. Attitudinal Data

How intrusive are the following features of information sharing? Sensors	
Data collectors	Data sharing criteria
$\operatorname{Context}/\operatorname{Purpose}$	
How privacy intrusive is the data sharing of the following sensors? Accelerometer	
Location	
Light	Sensors
Noise	
How privacy intrusive are the following data collectors of your mobile sensor data? Corporations	
Non-governmental Organizations	
Governments	Data collectors Studied data-sharing criteria
Educational Institutes	
How privacy intrusive are the following contexts under which sen- sor data is used by stakeholders? Health/Fitness	
Social Networking	
Environment	Contexts / Survey questions to derive the
Transportation	privacy intrusion level

2. Intrinsic Data Sharing of Participants

2. Intrinsic Data Sharing of Participants

3. Rewarded Data Sharing of Participants

3. Rewarded Data Sharing of Participants

4. Coordinated Data Sharing

A multi-agent discrete-choice combinatorial optimization problem

3 options to choose from for each agent:

intrinsic vs. two rewarded data sharing

4. Coordinated Data Sharing

A multi-agent discrete-choice combinatorial optimization problem

3 options to choose from for each agent:

intrinsic vs. two rewarded data sharing

Quality of service:

<u>Global cost function</u>: *min root mean square error* Matching indicator between shared & required data

Privacy:

Local cost function: data sharing level

4. Coordinated Data Sharing

A multi-agent discrete-choice combinatorial optimization problem

Options to choose from for each agent: *intrinsic vs. two rewarded data sharing*

Quality of service:

<u>Global cost function</u>: *min root mean square error* Matching indicator between shared & required data

Privacy:

Local cost function: data sharing level

Collective learning heuristic of EPOS:

DecentralizedUnsupervisedEfficientPrivacy-preservingResilientScalable

Open-source Github

Three Key Results!

Three Key Results

1. Coordinated data sharing is efficient

It <u>recovers privacy</u> for people & <u>reduces costs</u> for service providers by accessing less but better quality of data

Three Key Results

1. Coordinated data sharing is efficient

It <u>recovers privacy</u> for people & <u>reduces costs</u> for service providers by accessing less but better quality of data

2. Data collector & context are the most important criteria with which individuals makes data-sharing choices

For <u>rewarded choices with privacy loss</u> though, the <u>type</u> of shared data becomes the most important criterion

Three Key Results

1. Coordinated data sharing is efficient

It <u>recovers privacy</u> for people & <u>reduces costs</u> for service providers by accessing less but better quality of data

2. Data collector & context are the most important criteria with which individuals makes data-sharing choices

For <u>rewarded choices with privacy loss</u> though, the <u>type</u> of shared data becomes the most important criterion

3. Individuals exhibit five key group-behavior changes from intrinsic to rewarded data sharing.

They are stable, yet reinforcing

1. Coordinated data sharing is efficient

It <u>recovers privacy</u> for people & <u>reduces costs</u> for service providers by accessing less but better quality of data

Privacy Goal Signals

Extracted "easy" & "hard" scenarios for the data collective to respond

Very high: Probability of sharing "5" at each data sharing scenario

mean • • •

Mismatch

Reduction

0.28

0.7

0.6

0.5

soc acc cor gov edu

noi tra gps lig ngo hea

env

Data-sharing Mismatch .0 .0 .0

0.2

0.1

Quality of Service

Rewards "**spoil**" data quality – Implications:

More data, more risks, more costs:

Financial, legal, environmental

Coordination "mines" data quality – Implications:

Less but more purposeful data

Minimizing excessive & insuffiecient data

Data Sharing Cost

Win-win for all: higher privacy for people, lower costs for service providers

2. Data collector & context are the most important criteria with which individuals makes data-sharing choices

For <u>rewarded choices with privacy loss</u> though, the <u>type</u> of shared data becomes the most important criterion

A Conjoint Analysis: Prediction Models

A Conjoint Analysis: Importance

100 Relative Importance [%] 50 0 Privacy [Attitudinal] Privacy [Intrinsic] Rewards [Rewarded] 关 -50 Privacy [Intrinsic-Rewarded] collectors sensors contexts Privacy [Coordinated] -100 acc gps ngo hea context edu soc lig <u>noi</u> gov env tra sensor S collector Data-sharing Criteria and Elements

Rewards change the importance of the data sharing criteria

Data collector & context determine privacy preservation

Data type determines rewarded choices with privacy loss

3. Individuals exhibit five key groupbehavior changes from intrinsic to rewarded data sharing.

They are stable, yet reinforcing

Data Sharing Behaviors

All possible behavioral changes

observed & unobserved:

	Without Rewards		With Rewards			
Data Sharing:	Low	Moderate	High	Low	Moderate	High
Privacy ignorants			1			1
Privacy neutrals		1			1	
Privacy preservers	1			1		
Rewards seekers		1				1
Rewards opportunists	✓					1
Privacy sacrificers	X				×	
Reward opposers (sharer)			×	×		
Reward opposers (neutral)		×		X		
Reward sacrificer (sharer)			×		×	

Data Sharing Behaviors

All possible behavioral changes observed & unobserved:

	Without Rewards		With Rewards		ls	
Data Sharing:	Low	Moderate	High	Low	Moderate	High
Privacy ignorants			1			1
Privacy neutrals		1			1	
Privacy preservers	1			1		
Rewards seekers		1				\checkmark
Rewards opportunists	\checkmark					1
Privacy sacrificers	×				×	
Reward opposers (sharer)			X	X		
Reward opposers (neutral)		×		X		
Reward sacrificer (sharer)			×		×	

Clustering algorithms	k-means	hierachical	pamkCBI
Privacy ignorants	0.79(8)	0.67~(41)	0.58(48)
Privacy neutrals	0.93~(0)	0.88(1)	0.7~(31)
Privacy preservers	0.89(7)	0.76~(16)	0.7~(31)
Rewards seekers	0.83(1)	0.75(17)	$0.61 \ (37)$
Rewards opportunists	0.84~(6)	0.76~(14)	0.56~(51)

High bootstrap values, same clusters among different algorithms

Data Sharing Behaviors

All possible behavioral changes observed & unobserved:

	Without Rewards		With Rewards		ls	
Data Sharing:	Low	Moderate	High	Low	Moderate	High
Privacy ignorants			1			1
Privacy neutrals		1			1	
Privacy preservers	1			1		
Rewards seekers		1				✓
Rewards opportunists	✓					1
Privacy sacrificers	X				×	
Reward opposers (sharer)			X	X		
Reward opposers (neutral)		×		X		
Reward sacrificer (sharer)			×		×	

Westin's population categ	gories [7.8]	Data-sharing Groups $(n = 84)$.			
Privacy fundamentalists	25%	Privacy preservers Reward opportunists	26.2%		
Privacy pragmatists	57%	Privacy neutrals Reward seekers	57.14%		
Privacy unconcerned	18%	Privacy ignorants	16.7%		

Significant match to Westin's general population categories [8]

Clustering algorithms	k-means	hierachical	pamkCBI
Privacy ignorants	0.79(8)	0.67(41)	0.58(48)
Privacy neutrals	0.93(0)	0.88(1)	0.7(31)
Privacy preservers	0.89(7)	0.76~(16)	0.7~(31)
Rewards seekers	0.83(1)	0.75~(17)	0.61 (37)
Rewards opportunists	0.84~(6)	0.76~(14)	$0.56\ (51)$

High bootstrap values, same clusters among different algorithms

1.3

Group Pair Difference of Privacy Sensitivity

0

-0.9

Data Sharing Polarization

ANOVA posthoc analysis

Discussion, Lessons Learnt & Future Work

Data collectives: A win-win modus operandi for privacy recovery & quality of service: <u>less & better data</u>

Policy interventions: Tailored campaigns based on the importance of data sharing (i) **criteria** & (ii) **groups** for higher <u>privacy awareness & engagement</u>

Generative AI: An opportunity to build large language models **ethically aligned** to values of communities sharing their data

Temporal coordination as an implementation of the "right to be forgotten"

Questions?

E-mail: <u>e.pournaras@leeds.ac.uk</u>

References

- [1] Pournaras, E., Ballandies, M.C., Bennati, S. and Chen, C.F., 2024. Collective privacy recovery: Data-sharing coordination via decentralized artificial intelligence. PNAS nexus, 3(2), p.pgae029.
- [2] Adams, A. and Angela Sasse, M., 2001. Privacy in multimedia communications: Protecting users, not just data. In People and computers XV interaction without frontiers: Joint Proceedings of HCI 2001 and IHM 2001 (pp. 49-64). Springer London.
- [3] Sekara, V., Alessandretti, L., Mones, E. and Jonsson, H., 2021. Temporal and cultural limits of privacy in smartphone app usage. *Scientific reports*, *11*(1), p.3861.
- [4] De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M. and Blondel, V.D., 2013. Unique in the crowd: The privacy bounds of human mobility. *Scientific reports*, *3*(1), pp.1-5.
- [5] Rose, J., Rehse, O. & Röber, B. The value of our digi- tal identity. URL https://www.bcg.com/en-gb/publications/2012/ digital-economyconsumer-insight-value-of-our-digital-identity, https://www.bcg.com/en-gb/publications/2014/ data-privacy-numbers.
- [6] Data Collectives open data: https://doi.org/10.6084/ m9.figshare.21750158
- [7] Oulasvirta, A., Pihlajamaa, A., Perkiö, J., Ray, D., Vähäkangas, T., Hasu, T., Vainio, N. and Myllymäki, P., 2012, September. Long-term effects of ubiquitous surveillance in the home. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (pp. 41-50).
- [8] Kumaraguru, P. & Cranor, L. F. Privacy indexes: a survey of Westin's studies (Carnegie Mellon University, School of Computer Science, 2005)