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Data-sharing Coordination via Decentralized Artificial Intelligence
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An Unforgiving Race of Power
Privacy
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World War Il

75%

of Jewish
found & killed

Netherlands

What made such huge difference?

I I25%

of Jewish
France

found & killed



UNIVERSITY OF LEEDS

‘Essential reading for those of us who click ‘agree’ ten times a day’

World War Il

5 0/ WHY AND HOW YOU SHOULD
TAKE BACK CONTROL
o OF YOUR DATA
» ’ % ~' ;
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of Jewish
found & killed

Netherlands

France

France had excluded sensitive
information from census for

2 5 % privacy reasons

of Jewish
found & killed
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Risks of Privacy Loss & the Privacy Paradox

. S 98 o9
How many installed apps are needed nB8o 8¢
to identify 91.2% of individuals? % g -
B
-
a
How many spatio-temporal GPS records ?
are needed to identify 95% of individuals? -

From 90% of individuals who give up
privacy, how many intend to protect it?
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Risks of Privacy Loss & the Privacy Paradox

How many installed apps are needed z_»m O
to identify 91.2% of individuals? T
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How many spatio-temporal GPS records
are needed to identify 95% of individuals?

From 90% of individuals who give up
privacy, how many intend to protect it?

6%

See [4,5]
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Implications of Collective Privacy Loss

Environmental impact &

Data centers consume too much energy: faster growth of & i
unprocessed data than Moore’s law predictions §#

Health impact

Privacy loss resembles an Surveilance stress & anxiety [7] &
ecological disaster with the global .

significance of climate change
Social impact

Algorithmic biases, discrimination,
censorship, loss of freedoms

Political impact

Influence of election results
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Privacy is not only an individual right...

... it is also a shared value in the digital era!

What are we missing here?

Collective arrangements for sharing data that provide a

minimum quality of services for maximum privacy
ELINOR OSTROM

2009 Nobel Laureate
in Economic Sciences V/,

who is sharing to whom, when, how much of what data & for what purpose?

Data as a scarce resource? Minimizing both excessive & insufficient levels of data
Share data under the doctrine “as little as possible, as much as necessary”

Data collectives
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Privacy Loss is Coordination Deficit
A Toy Example
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Existing Status Quo of Data Sharing

® 1o coordination

Risk of identity inference [4] Is not this data (far most times)
excessive?

Turn on your GPS?
Default: Share all your personal data
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® no coordination ‘ Total g Data

= ] . : = =7
Coordinated Data Sharing ‘ ==
Fairer data-sharing contributions N % = _ 1 1

& & RN 2 [z] E

» 5 7 B .!\\12 ret;ordsl,\ '

=

> 50%

i G N
<4

Reduced risk of identity inference [4]

'
"
"

' 4

Scenario: Determine
the highest traffic
density areas

Or.. selectively turning on & off your GPS?
Collective arrangement: Share "as little as possible, as much as necessary’
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Total g Data

Coordinated Data Sharing S E
Fairer data-sharing contributions 2 1|

2 2 ‘‘‘‘ 15

. \12 rewcor;‘:lsl,\

[ ]
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= | Scenario: Accurate traffic
1| density estimation in the
city center over periphery

6 records

Reduced risk of identity inference [4]

Or.. selectively turning on & off your GPS?
Collective arrangement: Share "as little as possible, as much as necessary’
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A Very Simple but Hard Idea to Materialize in Practice

How to automate & scale up such
collective arrangements of data sharing?

Coordinated data sharing:
A techno-socio-economic problem of computational complexity

Modeling as a multi-agent discrete-choice optimization problem
Solving using decentralized, privacy-preserving & efficient Al
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Related Work

Security & cryptography: differential privacy,
multi-party computation, k-anonymization

Limited use of shared data

Federated learning
No coordination element for data-sharing optimization

Personalized privacy assistants
Privacy-intrusive themselves

Methodological limitations
Survey studies, limited realism, no causal inference
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A Living-lab Real-world Experiment

An inter-disciplinary study on
coordinated data sharing
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Data Sharing Conditions & Hypotheses

A novel & complete spectrum for an in-depth understanding of data sharing choices

EXCESSIVE
DATA SHARING

AS LITTLE AS POSSIBLE
As MucH As Necessary 010010

INSUFFICIENT 10101
DATA SHARING 1 1 1
DATA
COLLECTIVE

DATA SHARING: ATTITUDINAL
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Data Sharing Conditions & Hypotheses

A novel & complete spectrum for an in-depth understanding of data sharing choices

EXCESSIVE
DATA SHARING

AS LITTLE AS POSSIBLE
As MucH As Necessary 010010

INSUFFICIENT 10101 0010
DATA SHARING

DATA
COLLECTIVE

DATA SHARING: ATTITUDINAL INTRINSIC
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Data Sharing Conditions & Hypotheses

A novel & complete spectrum for an in-depth understanding of data sharing choices

EXCESSIVE

DATA SHARING )1010010
WA R 010010 .
INSUFFICIENT 110101 Lo
DATA SHARING )

DATA
COLLECTIVE

DATA SHARING: ATTITUDINAL INTRINSIC REWARDED
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Data Sharing Conditions & Hypotheses

A novel & complete spectrum for an in-depth understanding of data sharing choices

COLLECTIVE
\1010010"’——\‘\\¢£Xﬁ§
110101

EXCESSIVE
DATA SHARING

AS LITTLE AS POSSIBLE
As MucH As Necessary 010010

110101

INSUFFICIENT
DATA SHARING

DATA
COLLECTIVE

ATTITUDINAL

DATA SHARING:

0010
0101

111
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Data Sharing Model

Data sharing criteria: theory on frust & risk in data sharing [2]
Mobile sensor data: ultimate killer app!

A full 4x4x4 factorial design: 64 combinations to study!

Data-sharing Criteria
A
( -\
Data Collector

9 NEWSs | & I E I
< > . | 77!

Global Position System [gps] Corﬁ;i;&;ﬁ%léor] Social neﬁoﬁng [soc]
0 < <48 Q00O
b S e®00

Noise [noi] ~  Non-gov. organization [ngo] . Enﬁronment [env]

D =™ EDEa

Accelerometer [acc] Educational Institute [edu] Transportation [tra]

D - +E~4L

Light [lig] Gov. Organization [gov] Health [hea]

Data-sharing Elements

Voice
processor Ambient

Global Positioning
’ temperature sensor
System Microphone P
Ambient light sensor
Magnetometer .
enctomete Moisture sensor

(compass)
Humidity sensor

Q)
Camera Digital barometric
. i pressure sensor
Touchscreen
Fingerprint

identity sensor

BlueTooth Accelerometer

Near field Gyroscope
communication

Proximity sensor

solieudds 3ulieys-eyeq
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A Novel Living-lab Experiment w0 W oo
''''''' ] llollollo llellgllo
>27,000 real data disclosures studied! Open data [6] °°°°°°°°°° DQEED; DQDQDQ EEDQDQ i

-ASSISTEDN A
COORDINATED

%E NNNNNNNNN

ETH Decision Out-of-lab ETH Decision
El r- Science Lab Experimentation Science Lab
Timeline 1%t Day +48 hours 4t Day

Entry Phase Core Phase Exit Phase
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COLLECTIVE
11010010 (CovERY
S8, 010010 110101 010010
110101 0010 111 110101

‘Hl 0101 )0 Hl

A Novel Living-lab Experiment
77777777 | |l |l @ Il ll [l
>27,000 real data disclosures studied! Open data [6] °°°°°°°°°° DQDQDQ &&Q EED&DQ vavies

I-ASSISTED N> VAN S
% E COORDINATED

\\\\\\\\\\\\\\\\\\\

ETH Decision Out-of-lab ETH Decision
El r- Science Lab Experimentation Science Lab
Timeline 15t Day +48 hours 4th Day
Entry Phase Core Phase Exit Phase
Lab pool 1. Instructions & consent 1. Daily app use 1. Exit web survey
,i\,i\,i\ 2. App installation 2. Data-sharing choices 2. Interview
participants 3. Entry app survey 3. Sensor data sharing 3. Compensation
T (4) Coordinated data sharing

(3) Rewarded data sharing (2x) Three options to choose from:

(1) Attitudinal & (2) intrinsic data sharing *  Oneintrinsic data sharing

+ Two rewarded data sharing
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COLLECTIVE
)1010010 FCOVERY
10101 010010

110101 0010 111 110101

Hl mm )0 Hl

A Novel Living-lab Experiment ==
77777777 1 [eele lelell
>27,000 real data disclosures studied! Open data [6] CCCCCCCCCC D&D&Dg D&EED; EED;D; .

%E \\\\\\\\\\\\\\\\\\\

ecessary 010010

ETH Decision Out-of-lab ETH Decision
El - Science Lab Experimentation Science Lab
Timeline 15t Day +48 hours 4th Day
Entry Phase Core Phase Exit Phase
Lab pool 1. Instructions & consent 1. Daily app use 1. Exit web survey
,i\,i‘,i\ 2. App installation 2. Data-sharing choices 2. Interview A
3. Entry app survey 3. Sensor data sharing 3. Compensation

participants

Max 75 CHE Show up payoff: 10 CHF App use payoff: 2.5x2 CHF Show up payoff: 10 CHF
ax Participation payoff: 15 CHF  Data-sharing rewards: 15x2 CHF  Participation payoff: 5 CHF

T (4) Coordinated data sharing
Three options to choose from:

* One intrinsic data sharing

* Two rewarded data sharing

(3) Rewarded data sharing (2x)
(1) Attitudinal & (2) intrinsic data sharing
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Data Sharing Model

Data sharing criteria: theory on frust & risk in data sharing [2]
Mobile sensor data: ultimate killer app!

A full 4x4x4 factorial design: 64 combinations to study!

Data-sharing Criteria
A
( -\
Data Collector
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’ temperature sensor
System Microphone P
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Data Collection Infrastructure

AR A A

R MR R )

Participants

X AUS

Sensor Data

EWS=

Newspaper

A
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Software Technical Governmental

NGO University Confederation
Data Collectors
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Data Collection Infrastructure
Mobile App
Local Data 9 . O @ What do you prefer to
Management ¥ w improve?
System [
>ensor Data Experimental Data 6

Rewards Privacy
Remore Data
Management System
. )) 0.0 0.0%
) Shared Sensor Data

A 4 A 4
9 W il

@ e O - ‘ =
"\"\ "\ a Pr|vate Software Technical Governmental
Newspaper NGO University Confederation

Participants Data Access Portal Data Collectors
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ETH Decision
Science Lab

Timeline 14Day.

Entry Phase

Instructions & consent
AdoA 2 Avpinstallation
participants 3 ENtry appsurvey

Show up payoff: 10 CHF
Max75 CHE 5. ticipation payoff: 15 CHF

UNIVERSITY OF LEEDS

1. Attitudinal Data

How intrusive are the following features of information sharing?

Sensors

Data collectors

Context/Purpose

How privacy intrusive is the data sharing of the following sensors?

Accelerometer
Location
Light

Noise

How privacy intrusive are the following data collectors of your

mobile sensor data?
Corporations

Non-governmental Organizations

Governments

Educational Institutes

Data sharing criteria

Sensors

Data collectors

How privacy intrusive are the following contexts under which sen-

sor data is used by stakeholders?
Health/Fitness

Social Networking
Environment

Transportation

Contexts

Studied data-sharing criteria

Survey questions to derive the
privacy intrusion level
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2. Intrinsic Data Sharing of Participants

[ W@ %.4l 5%E 14:24

Initial Data DEVA 0/64

Please choose the amount of

Accelerometer sensor data Question expressing
shared with the Tagesanzeiger ] .
(corporation) to be used in the a data sharing scenario

context of Social Networking

Maximum data No Data

Regulates the frequency
Ogf1 1042043 |044]0,5 of data collection

— Privacy: 100%. No collection
— Privacy: 75%. Collection: every 120s

— Privacy: 50%. Collection: every 90s

— Privacy: 25%. Collection: every 60s

— Privacy: 0%. Collection: every 30s

User 1d:57f24de5750358a761527a19 ‘:
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Timeline 14Day.

Entry Phase

. Instructions & consent

AdoA 2 Avpinstallation

participants 3 ENtry appsurvey

Show up payoff: 10 CHF

Max75 CHE 5. ticipation payoff: 15 CHF
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Please choose the amount of
Accelerometer sensor data

shared with the Tagesanzeiger
(corporation) to be used in the

context of Social Networking

Data Sharing of Part

Wl 5% 12 14:24

Maximum data

o

Question expressing
a data sharing scenario

Regulates the frequency

O 1|0

N
O
w

° of data collection

User I1d:57f24de5750358a761527a19

— Privacy: 0%. Collection: every 30s

— Privacy: 100%. No collection ™

— Privacy: 75%. Collection: every 120s
— Privacy: 50%. Collection: every 90s

— Privacy: 25%. Collection: every 60s

Contents lists available at ScienceDirect

Future Generation Computer Systems
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Optimization of privacy-utility trade-offs under informational )

self-determination

Thomas Asikis *, Evangelos Pournaras
Professorship of Computational Social Science ETH Zurich, Zurich, Switzerland

HIGHLIGHTS

« Ageneric, novel framework for measuring & optimizing privacy-utility trade-offs.
« An analytical proof & application to real-world data from a Smart-Grid pilot project.
o Privacy-utility tradeoffs are optimized under informational self-evaluation.
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Keywords:
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Privacy

Utility

Trade-off

ization
Masking
Differential privacy
Data transformation
Diversity

Internet of Things
Big Data

The pervasiveness of Internet of Things results in vast volumes of personal data generated by smart
devices of users (data producers) such as smart phones, wearables and other embedded sensors. It is
a common requirement, especially for Big Data analytics systems, to transfer these large in scale and
ystems for analys third parties thatrunand
manage these systems (data consumers) do not always gualanlee users’ privacy. Their primary interest is
toimprove utility thatis usually a metric related to the performance, costs and the quality of service. There
are several techniques that mask user-generated data to ensure privacy, e.g. differential privacy. Setting
upaprocess for masking data, referred to in this paper as a ‘privacy setting’, decreases on the one hand the
utility of data analytics, while, on the other hand, increases privacy. This paper studies parameterizations
of privacy settings that regulate the trade-off between maximum utility, minimum privacy and minimum
utility, maximum privacy, where utility refers to the accuracy in the estimations of aggregation functions.
Privacy settings can be p d policies (
data sharing). Nonetheless they can also be applied autonomously by each user or decided under the
influence of (monetary) incentives (heterogeneous data sharing). This latter diversity in data sharing
by informational self-determination plays a key role on the privacy-utility trajectories as shown in this
paper both theoretically and empirically. A generic and novel computational framework is introduced
for measuring privacy-utilty trade-offs and their Pareto upumlzauun ‘The framework computes a broad
spectrum of such trade-offs that form privacy-utility and
data sharing, The practical use of the Framework s experimentally evaluated using Tealworld data from
a Smart Grid pilot project in which energy consumers protect their privacy by regulating the quality of
the shared power demand data, while utili i f the aggregate load
in the network to manage the power grid. Over 20 000 differential privacy settings are applied to shape
the computational trajectories that in turn provide a vast potential for data consumers and producers to
participate in viable participatory data sharing systems.
©2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.orglicenses/by/4.0]).

Privacy-ultility trade-offs are
also possible to make with
differential privacy settings
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App use payoff: 2.5x2 CHF

Data-sharing rewards: 15x2 CHF

3. Rewarded Data Sharing of Participants

® @ = .a186%M 18:41

Data Sharing  Day:2 0/64

What do you prefer to
improve?

Rewards Privacy

0.0 0.0%

CHF Privacy

User Id:
Round:1  58122d4472d92b1903408a65



Out-of-lab
Experimentation

App use payoff: 2.5x2 CHF
Data-sharing rewards: 15x2 CHF

UNIVERSITY OF LEEDS

3. Rewarded Data Sharing of Participants

® © T .a186% M 18:41 (MESEP R=R ! NG @ T RA 46%@ 17:25
Data Sharing  Day:2 0/64

Data Sharing  Day:2 1/64

What C.IO AL p;efer to Please choose the amount of
Improve: Accelerometer sensor data shared

with the Tagesanzeiger
(corporation) to be used in the

context of Environment

Maximum Data Minimum Data

Rewards

Privacy O 110210 3|® 4]0

5 :
@—’0.3 -37.5| 0.2 -25.0| 0.2 -12.5| 0.1 | 0.0 | 0.0 125

0.0 0.0% ()—> o1 750% +—(2)

CHF Privacy CHF Privacy

User Id: User Id:
Round:1  58122d4472d92b1903408a65

Round:1 57c6f62071f41a7214f1a667
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4. Coordinated Data Sharing

A multi-agent discrete-choice
combinatorial optimization problem

3 options to choose from for each agent:
intrinsic vs. two rewarded data sharing
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4. Coordinated Data Sharing

A multi-agent discrete-choice
combinatorial optimization problem

3 options to choose from for each agent:
intrinsic vs. two rewarded data sharing

Quality of service:
Global cost function: min root mean square error

Matching indicator between shared & required data

Privacy:

Local cost function: data sharing level
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4. Coordinated Data Sharing

A multi-agent discrete-choice
combinatorial optimization problem

Options to choose from for each agent:
intrinsic vs. two rewarded data sharing

Quality of service:
Global cost function: min root mean square error

Matching indicator between shared & required data

Privacy:

Local cost function: data sharing level

Collective learning heuristic of EPOS:

Decentralized Unsupervised Efficient

| _ ) Open-source
Privacy-preserving Resilient Scalable Github
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Three Key Results!
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Three Key Results

1. Coordinated data sharing is efficient

It recovers privacy for people & reduces costs for service
providers by accessing less but better quality of data
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Three Key Results

1. Coordinated data sharing is efficient

It recovers privacy for people & reduces costs for service
providers by accessing less but better quality of data

2. Data collector & context are the most important criteria with which individuals
makes data-sharing choices

For rewarded choices with privacy loss though, the type of shared data becomes the
most important criterion
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Three Key Results

1. Coordinated data sharing is efficient

It recovers privacy for people & reduces costs for service
providers by accessing less but better quality of data

2. Data collector & context are the most important criteria with which individuals
makes data-sharing choices

For rewarded choices with privacy loss though, the type of shared data becomes the
most important criterion

3. Individuals exhibit five key group-behavior changes from intrinsic to rewarded
data sharing.

They are stable, yet reinforcing
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1. Coordinated data sharing is efficient

It recovers privacy for people & reduces costs for service providers by
accessing less but better quality of data
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Privacy Goal Signals

Extracted “easy” & “hard” scenarios for the data collective to respond

Very high: Probability of sharing “5” at each data sharing scenario

Very Low: Probability of sharing “1” at each data sharing scenario\

T T T T T T T T T T T T T T T T T T T T T T T
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Privacy-preservation Goal
Very High Very Low
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Data-sharing Conditions

Ranked Data-sharing Scenarios
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Data Sharing Cost

Win-win for all: higher privacy for people, lower costs for service providers

1 000 T T T T T T T T T T T
48.5% Permutations
L Mean
900 I Cost \
Increase
800 10.7%
Cost
700 Reduction
600 f 32.9%
500
L Coordinated Coordinated
400 Rewarded [with intrinsic cost] [without intrinsic cost]
- - - - - -
300 1 1 1 1 1 1 1 1 1 1 1 1 1
Intrinsic 18t ond Very Low Low Medium High Very High Very Low Low Medium High Very High

Data-sharing Conditions
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2. Data collector & context are the most
important criteria with which individuals
makes data-sharing choices

For rewarded choices with privacy loss though, the type of shared data
becomes the most important criterion
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A Conjoint Analysis: Prediction Models

Type, collectors & contexts explain well privacy choices

Privacy 0.1 : ! ! : ' ' collectors =@=  contexts
[Igtrinsic] 0 : :
R<=0.86 04
Rewards 0.04
[Rewarded] 0
R®=0.93 : : : : . : - : . .

004p oo o T o T .
Privacy 0.1 ' : :
[Intrinsic-Rewarded] ¢
R?=0.82

-0.1
Privacy 0.1
[Coordinated] 0
R?=0.84

-0.1 . . . . ; ; ; . . .

acc lig noi aps cor ngo gov edu soc env tra hea
T Data-sharing Scenarios

dependent variables T

independent variables
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A Conjoint Analysis: Importance

Rewards change the importance of the data sharing criteria

100 ! ' ' ' ' ! ! ' ! ! ' ! '
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Data-sharing Criteria and Elements

Data collector & context determine privacy preservation

Data type determines rewarded choices with privacy loss
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3. Individuals exhibit five key group-
behavior changes from intrinsic to
rewarded data sharing.

They are stable, yet reinforcing
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Data Sharing Behaviors

All possible behavioral changes
observed & unobserved:

Without Rewards With Rewards
Data Sharing: Low Moderate High Low Moderate High

Privacy ignorants v v
Privacy neutrals v v

Privacy preservers v v

Rewards seekers v v
Rewards opportunists v v
Privacy sacrificers X X

Reward opposers (sharer) X X

Reward opposers (neutral) X X

Reward sacrificer (sharer) X X
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Data Sharing Behaviors o
1 reward opportunists v \
. . rivacy preservers
All possible behavioral changes P orivaty ignorants
rewar seeﬁzqgl
rivacy neu
observed & unobserved: _08 privacy
®)
@
Without Rewards With Rewards T
©
Data Sharing: Low Moderate High Low Moderate High q?) 0.6
Privacy ignorants v e @
Privacy neutrals v v 30.4
Privacy preservers v v _g
Rewards seekers v v o
Rewards opportunists v v 0.2
Privacy sacrificers X X
Reward opposers (sharer) X X
Reward opposers (neutral) X X 0% 1
Reward sacrificer (sharer) X X

fracy [Intrinsic]

Clustering algorithms k-means hierachical pamkCBI

Privacy ignorants 0.79 (8) 0.67 (41) 0.58 (48)
Privacy neutrals 0.93 (0) 0.88 (1) 0.7 (31)
Privacy preservers 0.89 (7) 0.76 (16) 0.7 (31)
Rewards seekers 0.83 (1) 0.75 (17) 0.61 (37)
Rewards opportunists 0.84 (6) 0.76 (14) 0.56 (51)

High bootstrap values, same
clusters among different algorithms
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Data Sharing Behaviors o
1 reward opportunists v \
. . rivacy preservers
All possible behavioral changes P orivaty ignorants
rewar seeﬁz@l
rivacy neu
observed & unobserved: _08 privacy
®)
@
Without Rewards With Rewards T
©
Data Sharing: Low Moderate High Low Moderate High q?) 0.6
Privacy ignorants v e @
Privacy neutrals v v 30.4
Privacy preservers v v _g
Rewards seekers v v o
Rewards opportunists v v 0.2
Privacy sacrificers X X
Reward opposers (sharer) X X
Reward opposers (neutral) X X 0% 1
Reward sacrificer (sharer) X X

fracy [Intrinsic]

Westin’s population categories [7. 81 Data-sharing Groups (n = 84). Clustering algorithms k-means hierachical pamkCBI

. . Privacy preservers Privacy ignorants 0.79 (8) 0.67 (41) 0.58 (48)
P fund talists 25% . 26.2%

rivacy TInCamEmatsis 2o Reward opportunists ’ Privacy neutrals 0.93 (0) 0.88(1) 0.7 (31)

‘ ‘ Privacy neutrals Privacy preservers 0.89 (7) 0.76 (16) 0.7 (31)
Privacy pragmatists 57% Reward seckers 57.14% Rewards seckers  0.83 (1) 0.75 (17)  0.61 (37)
Privacy unconcerned 18% Privacy ignorants 16.7% Rewards opportunists 084 (6) 076 (14) 056 (51)

Significant match to Westin’s
general population categories [8]

High bootstrap values, same
clusters among different algorithms
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Data Sharing Polarization

Repititve data sharing dillemas create polarization

Privacy preservers & ingorants tend to preserve &
ignore further privacy

o
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o))
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| ||Sensor type

- uniqué“ | repéated -
Reward opportunists —¥—
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Privacy neutrals —&—
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Data Sharing Scenarios

Group Pairs

ANOVA posthoc analysis
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Discussion, Lessons Learnt & Future Work

Data collectives: A win-win modus operandi for privacy
recovery & quality of service: less & better data

Policy interventions: Tailored campaigns based on the importance of data
sharing (i) criteria & (ii) groups for higher privacy awareness & engagement

Generative Al: An opportunity to build large language models ethically aligned to values
of communities sharing their data

Temporal coordination as an implementation of the “right to be forgotten”
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Questions?

E-mail: e.pournaras@leeds.ac.uk

. PNAS
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