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An Unforgiving Race of Power
Privacy
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Risks of Privacy Loss & the Privacy Paradox

How many installed apps are needed 
to identify 91.2% of individuals?

How many spatio-temporal GPS records 
are needed to identify 95% of individuals? 

?

From 90% of individuals who give up 
privacy, how many intend to protect it? ?

?



Risks of Privacy Loss & the Privacy Paradox

How many installed apps are needed 
to identify 91.2% of individuals?

How many spatio-temporal GPS records 
are needed to identify 95% of individuals? 

4

From 90% of individuals who give up 
privacy, how many intend to protect it? 76%

4
See [4,5]



Implications of Collective Privacy Loss 

Environmental impact
Data centers consume too much energy: faster growth of 

unprocessed data than Moore’s law predictions

Health impact
Surveilance stress & anxiety [7]

Social impact
Algorithmic biases, discrimination, 

censorship, loss of freedoms

Political impact
Influence of election results

Privacy loss resembles an 
ecological disaster with the global 
significance of climate change



Privacy is not only an individual right… 
… it is also a shared value in the digital era! 

What are we missing here? 
Collective arrangements for sharing data that provide a 
minimum quality of services for maximum privacy

Data as a scarce resource? Minimizing both excessive & insufficient levels of data
Share data under the doctrine “as little as possible, as much as necessary”

Data collectives 

who is sharing to whom, when, how much of what data & for what purpose? 



Privacy Loss is Coordination Deficit
A Toy Example



Existing Status Quo of Data Sharing

≥ 4
Turn on your GPS?
Default: Share all your personal data

Is not this data (far most times) 
excessive? 

Risk of identity inference [4]



Coordinated Data Sharing

Scenario: Determine 
the highest traffic 

density areas

< 4
Reduced risk of identity inference [4]

Or.. selectively turning on & off your GPS?
Collective arrangement: Share `as little as possible, as much as necessary’

⚖
> 50% ⇣

Fairer data-sharing contributions



Coordinated Data Sharing

Scenario: Accurate traffic 
density estimation in the 

city center over periphery

< 4
Reduced risk of identity inference [4]

Or.. selectively turning on & off your GPS?
Collective arrangement: Share `as little as possible, as much as necessary’

⚖
50% ⇣

Fairer data-sharing contributions



A Very Simple but Hard Idea to Materialize in Practice

How to automate & scale up such 
collective arrangements of data sharing?

Modeling as a multi-agent discrete-choice optimization problem
Solving using decentralized, privacy-preserving & efficient AI

Coordinated data sharing:
A techno-socio-economic problem of computational complexity



Related Work

Security & cryptography: differential privacy, 
multi-party computation, k-anonymization
Limited use of shared data

Personalized privacy assistants
Privacy-intrusive themselves

Federated learning
No coordination element for data-sharing optimization

Methodological limitations
Survey studies, limited realism, no causal inference



A Living-lab Real-world Experiment
An inter-disciplinary study on 

coordinated data sharing



Data Sharing Conditions & Hypotheses

A novel & complete spectrum for an in-depth understanding of data sharing choices
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A novel & complete spectrum for an in-depth understanding of data sharing choices



Data Sharing Model

A full 4x4x4 factorial design: 64 combinations to study! 

Data sharing criteria: theory on trust & risk in data sharing [2]

Mobile sensor data: ultimate killer app!



A Novel Living-lab Experiment

Entry Phase Core Phase Exit Phase

ETH Decision
Science Lab 

1. Instructions & consent
2. App installation
3. Entry app survey

1. Daily app use
2. Data-sharing choices
3. Sensor data sharing

1. Exit web survey
2. Interview
3. Compensation

ETH Decision
Science Lab

Lab pool

Show up payoff: 10 CHF
Participation payoff: 15 CHF

App use payoff: 2.5x2 CHF
Data-sharing rewards: 15x2 CHF

Show up payoff: 10 CHF
Participation payoff: 5 CHFMax 75 CHF

+48 hours

participants

4th Day1st Day

. . .

Timeline

Out-of-lab
Experimentation

>27,000 real data disclosures studied! Open data [6]



A Novel Living-lab Experiment

Entry Phase Core Phase Exit Phase

ETH Decision
Science Lab 

1. Instructions & consent
2. App installation
3. Entry app survey

1. Daily app use
2. Data-sharing choices
3. Sensor data sharing

1. Exit web survey
2. Interview
3. Compensation

ETH Decision
Science Lab

Lab pool

Show up payoff: 10 CHF
Participation payoff: 15 CHF

App use payoff: 2.5x2 CHF
Data-sharing rewards: 15x2 CHF

Show up payoff: 10 CHF
Participation payoff: 5 CHFMax 75 CHF

+48 hours

participants

4th Day1st Day

. . .

Timeline

Out-of-lab
Experimentation

(1) Attitudinal & (2) intrinsic data sharing
(3) Rewarded data sharing (2x)

(4) Coordinated data sharing
Three options to choose from: 
• One intrinsic data sharing
• Two rewarded data sharing

>27,000 real data disclosures studied! Open data [6]



A Novel Living-lab Experiment

Entry Phase Core Phase Exit Phase

ETH Decision
Science Lab 

1. Instructions & consent
2. App installation
3. Entry app survey

1. Daily app use
2. Data-sharing choices
3. Sensor data sharing

1. Exit web survey
2. Interview
3. Compensation

ETH Decision
Science Lab

Lab pool

Show up payoff: 10 CHF
Participation payoff: 15 CHF

App use payoff: 2.5x2 CHF
Data-sharing rewards: 15x2 CHF

Show up payoff: 10 CHF
Participation payoff: 5 CHFMax 75 CHF

+48 hours

participants

4th Day1st Day

. . .

Timeline

Out-of-lab
Experimentation

(1) Attitudinal & (2) intrinsic data sharing
(3) Rewarded data sharing (2x)

(4) Coordinated data sharing
Three options to choose from: 
• One intrinsic data sharing
• Two rewarded data sharing

>27,000 real data disclosures studied! Open data [6]



Data Sharing Model

A full 4x4x4 factorial design: 64 combinations to study! 

Data sharing criteria: theory on trust & risk in data sharing [2]

Mobile sensor data: ultimate killer app!
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1. Attitudinal Data

Data sharing criteria
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Data collectors

Contexts

Studied data-sharing criteria

Survey questions to derive the 
privacy intrusion level
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2. Intrinsic Data Sharing of Participants 

Question expressing
a data sharing scenario
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Privacy-utility trade-offs are 
also possible to make with 
differential privacy settings
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4
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4. Coordinated Data Sharing

A multi-agent discrete-choice 
combinatorial optimization problem
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4. Coordinated Data Sharing

Quality of service: 
Global cost function: min root mean square error
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Privacy:
Local cost function: data sharing level
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Collective learning heuristic of EPOS:

Decentralized

Privacy-preserving

Unsupervised Efficient

Resilient Scalable

4. Coordinated Data Sharing

Quality of service: 
Global cost function: min root mean square error
Matching indicator between shared & required data

Privacy:
Local cost function: data sharing level

A multi-agent discrete-choice 
combinatorial optimization problem

Open-source 
Github

Entry Phase Core Phase Exit Phase

ETH Decision
Science Lab 

1. Instructions & consent
2. App installation
3. Entry app survey

1. Daily app use
2. Data-sharing choices
3. Sensor data sharing

1. Exit web survey
2. Interview
3. Compensation

ETH Decision
Science Lab

Lab pool

Show up payoff: 10 CHF
Participation payoff: 15 CHF

App use payoff: 2.5x2 CHF
Data-sharing rewards: 15x2 CHF

Show up payoff: 10 CHF
Participation payoff: 5 CHFMax 75 CHF

+48 hours

participants

4th Day1st Day

. . .

Timeline

Out-of-lab
Experimentation

Options to choose from for each agent: 
intrinsic vs. two rewarded data sharing



Three Key Results! 
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Three Key Results

1. Coordinated data sharing is efficient
It recovers privacy for people & reduces costs for service 
providers by accessing less but better quality of data

2. Data collector & context are the most important criteria with which individuals 
makes data-sharing choices
For rewarded choices with privacy loss though, the type of shared data becomes the 
most important criterion

3. Individuals exhibit five key group-behavior changes from intrinsic to rewarded 
data sharing. 
They are stable, yet reinforcing



1. Coordinated data sharing is efficient
It recovers privacy for people & reduces costs for service providers by 

accessing less but better quality of data
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Privacy Goal Signals
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Data Sharing Cost
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2. Data collector & context are the most 
important criteria with which individuals 

makes data-sharing choices
For rewarded choices with privacy loss though, the type of shared data 

becomes the most important criterion



A Conjoint Analysis: Prediction Models
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A Conjoint Analysis: Importance
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Data collector & context determine privacy preservation

Data type determines rewarded choices with privacy loss



3. Individuals exhibit five key group-
behavior changes from intrinsic to 

rewarded data sharing. 
They are stable, yet reinforcing



Data Sharing Behaviors
All possible behavioral changes
observed & unobserved:
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Data Sharing Behaviors

Significant match to Westin’s 
general population categories [8]

All possible behavioral changes
observed & unobserved:

High bootstrap values, same 
clusters among different algorithms
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Data Sharing Polarization
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Discussion, Lessons Learnt & Future Work

Data collectives: A win-win modus operandi for privacy 
recovery & quality of service: less & better data 

Policy interventions: Tailored campaigns based on the importance of data 
sharing (i) criteria & (ii) groups for higher privacy awareness & engagement

Generative AI: An opportunity to build large language models ethically aligned to values 
of communities sharing their data

Temporal coordination as an implementation of the “right to be forgotten”



Questions?
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