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Abstract. Explainability is a growing concern in many machine learn-
ing applications. Machine learning platforms now typically provide ex-
planations accompanying their model output. However, this may be con-
sidered as just a first step towards defining explainability as a service
in itself, which would allow users to get more control over the kind of
explainability technique they wish to employ. In this paper, we first pro-
vide a survey of the current offer of machine learning platforms, observing
their pricing models and the explainability features they possibly offer.
In order to progress towards Explainability-as-a-Service (XaaS), we pro-
pose to base its definition on the REST paradigm, considering three
major examples of explainability techniques, relying on either feature
scoring, surrogate linear models, or internal state observation. We also
show that XaaS is dependent on machine-learning model provisioning,
and the two services are linked by a one-way essential complement rela-
tionship, where ML provisioning plays the role of the essential component
and XaaS is the complement option. We also suggest that vertical inte-
gration is the natural arrangement for companies offering either service,
given their mutual relationship.
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1 Introduction

Explainability is becoming an unavoidable companion to all machine learning
(ML) models. In many fields, providing the output of a machine-learning task,
though exhibiting impressive performances, is not enough. An explanation of how
the result was obtained and what contributed most to those results is required
by both domain experts and people affected by those results and is typically
attained by identifying the most relevant features to determine the output of
the ML model.

The literature on explainability techniques is now so large that it includes
hundreds of papers. In Section 2, we provide a brief review of the most rele-
vant ones. A recent survey dedicated to a single category of machine learning
architectures, namely transformers, counted roughly 150 papers [9].
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Though explainability is an additional task with respect to building a machine-
learning model, its growing relevance has led many machine-learning platforms
(e.g., Azure or AWS) to include explainability parameters when showing the
resulting ML model. Though bundling explainability information adds value to
ML model building, we observe that it is lacking at least in two respects. First,
explainability is provided on as as-is basis, denying users the possibility to spec-
ify the explainability technique they wish. Second, it does not extract the full
value of the information that is provided alongside ML model results.

We claim that explainability should be considered as a service in itself, which
the user can ask for and pay accordingly. Though introducing explainability as
a service has been invoked in the literature, no further actions have been taken
to fulfil that wish. In this paper, we wish to mark a first step in that direc-
tion through the following contributions: a) we review the current panorama of
machine-learning platforms, highlighting their side explainability features (Sec.
3); b) we provide an initial description of the service, adopting the REST (Repre-
sentational State Transfer) paradigm (Sec. 4); c) we show that Explainability-as-
a-Service can be considered to be in a one-way essential complement relationship
with the ML model service, with consequences on its pricing (Sec. 5).

2 Literature Review

Explainability-as-a-Service (XaaS for short) relies on the adoption of explain-
ability methods and can be seen as an accompanying feature of ML models. In
this section, we briefly survey the literature on explainability and then examine
the (scarce) literature on XaaS, highlighting the research gap.

There are many ways to classify the explainability methods. Here, we adopt
the classification into model-agnostic and model-aware techniques proposed in
[2], based on the relationship to the model to be explained. In model-agnostic
techniques, the model to be explained is considered as a black box, i.e., as a set
of input-output tuples, and the explanation is derived just by analysing these
tuples. On the other hand, in the model-aware family, the architecture of the
model to be explained is known and can be exploited to gain insight into the
way the model result is arrived at.

2.1 Model-agnostic techniques

In most model-agnostic methods, explanations are sought by perturbing the
input and measuring the differences in the output. A major technique is Local
Interpretable Model-agnostic Explanation (LIME) [14], where linear models are
derived as surrogates for the actual ML model. It provides a local explanation
with no guarantee about its capabilities outside a small neighbourhood. Another
method providing a surrogate model is SHAP (SHapley Additive exPlanations)
[11], which employs game theory based on the notion of Shapley values [17].
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2.2 Model-aware techniques

Model-aware techniques are largely employed when the ML model to be ex-
plained employs neural networks. Such model-aware methods observe, e.g., the
activations returned by layers in the neural network or the gradients computed
by the learning algorithm. Methods dedicated to attention-based architectures,
e.g., transformers, are achieving greater visibility [9].

A major activation-based method is Layer-wise Relevance Propagation (LRP)
[3], where all layers of the neural network use ReLU activation, like in convo-
lutional architectures (CNN). Neuron activations represent the relevance of the
neuron. Many subsequent works extended LRP beyond the ReLU assumption,
e.g., [8]. Further variations of LRP are Partial-LRP, applicable to transform-
ers [18], and that proposed for images in [6]. A different approach dedicated to
CNN architectures to classify images was Class Activation Mapping (CAM) [19],
where a global average pool layer is included just before the fully connected last
layer. The activation given by each filter of the last convolutional layer is mul-
tiplied by the weights matrix of the last fully connected layer to form scores for
each super-pixel (a patch) of the image. Super-pixels are then reconciled with
the original image to form a saliency map over the original pixels. Variations of
this method were presented in [12] (based on Single Value Decomposition, in [16]
(Grad-CAM) and in [5] (Grad-CAM++). Attention Rollout and Attention Flow
were both presented in [1], using the attention weights as a proxy for explaining
the output. By accumulating the attention scores over the layers (from last to
first), a score can be computed for each input feature.

We have just offered a brief survey of the large body of literature dealing with
explainability. The notion of configuring it as a service has not been explored
as largely. One of the first attempts concerned a very specific application field,
i.e., the use of explainable AI for robot planning, where an automated planner
is called to justify its plans based on the user’s constraints [4]. XaaS has been
invoked as an approach to address biases and satisfy users’ requirements in
[10], where, however, no specific solutions are suggested. Further support for
the introduction of XaaS was given in [13], where the abbreviation XaaS was
also introduced, in the context of finance applications of AI, with third-party
providers offering specialized tools and services for AI explainability, in particular
surrogate linear models (namely LIME and SHAP). Again, no specific solutions
are suggested for the service. The notion of XaaS was again put forward in [15],
with, however, no specific description of the service architecture. What we see
missing in the literature is a precise definition of a service architecture for XaaS.

3 Machine Learning Platforms

In addition to developing their own ML solutions via coding on their machines,
researchers and practitioners may also exploit the services offered by ML plat-
forms. Those platforms are to be given the problem and a dataset and allow
the user to select an algorithm and proceed with model training, validation and
deployment. In this section, we provide a brief description of those platforms.
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Most of these platforms target non-technical users, so they offer a simple
user interface to upload data of many different types (images, text, videos, etc.),
guiding the user through preprocessing the data and labelling them. Also, the
platforms we examine here focus on supervised learning techniques because they
are easier to understand for a non-technical user.

The major machine-learning platforms are:

– Google Cloud AutoML (https://cloud.google.com/automl)
– AWS SageMaker (https://aws.amazon.com/sagemaker), which offers both

no-code solutions (JumpStart, Canvas, etc.) and tools to train a model by
coding.

– Azure AutoML (https://azure.microsoft.com/solutions/automated-machine-
learning)

– IBM Watson Studio (https://www.ibm.com/products/watson-studio)
– BigML (https://bigml.com/)
– ObviouslyAI (https://www.obviously.ai/)

All these platforms offer some preprocessing tools, usually guided by visual-
izations produced through automatic data exploration, and also labelling tools,
with many identifiable similarities with dedicated tools (such as Label Studio3).

Even though all the platforms offer the possibility to train a model from
scratch, from simple regressions to more complex models such as (sequential)
neural networks, only some allow us to exploit the so-called Foundation Models.
Since foundation models are most often closed-source, the availability of these
models inside a platform means that there exists a deal between the owner of the
platform and the companies owning the models. Depending on the model, they
can be used either by fine-tuning on the user data, or with a few-shots approach.

The implication of these deals between companies is that some models are
provided only by some platforms. For instance, the only platform to provide
access to OpenAI models is Azure AutoML, because of the exclusive deal signed
by OpenAI and Microsoft4. For this reason, the differences between platforms
are not limited to their functionalities and user interface, but may extend to
the set of pre-trained models available. Although most online machine learning
platform providers try to train their own foundation models to be used in their
platforms, there exists a differentiation between providers. Some providers use
their own models as their crown jewels (e.g., Google and IBM), while others
focus on models developed by other companies (e.g., Microsoft and Amazon).

A further difference among providers is related to the provider’s cloud ecosys-
tem itself. Indeed, while small providers (e.g., BigML and ObviouslyAI) do not
have a complete cloud ecosystem, big providers (e.g., Google, Amazon, Microsoft
and IBM) offer a full set of services related to machine learning, e.g., data stor-
age, which is critical for data-intensive applications and also for training ML
models. Small providers tend to integrate as many services as possible to in-
crease their services’ attractiveness. On the other hand, big providers wish to
3 https://labelstud.io/
4 https://blogs.microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/
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turn customers away from competitors and have them switch to their services.
They do so by providing integration with other providers just through favour-
ing migration, leaving as a prerequisite that the data should be either uploaded
directly to the ML service or integrated by using their data storage service.

All big providers offer an explainability service (among small providers, BigML
offers explainability while ObviouslyAI does not). Furthermore, all big providers
(which usually also offer PaaS services to train machine learning models) give
the users the possibility to upload already-trained models built using standard
frameworks (e.g., PyTorch or Tensorflow), so the platform can apply explain-
ability even if models have been trained outside. Platforms tend to use well-
known explainability methods, typically either model-agnostic post-hoc methods
or post-hoc methods based on neural network architectures.

4 Explainability As A Service

In the previous sections, we examined current explainability solutions and ML
platforms, where explainability is offered as a free companion to ML model
building. We claim that explainability can now be offered as a separate service.
A formal description of XaaS has not been provided yet. In this section, we wish
to introduce a formal description of explainability as a web service, adopting
REST (Representational State Transfer) as the tool of reference.

In order to describe the interactions between systems, we have chosen the
OpenAPI standard instead of WSDL (Web Service Definition Language), due
to its wide use in real-world applications and the availability of graphical tools
to visualize and interact with APIs. Also, OpenAPI is mainly based on REST,
which is the de-facto standard for web applications. Also, the stateless nature of
REST makes users tend to build easier APIs that are also much easier to scale
up because of the lack of critical sections intrinsic to the APIs themselves.

The platform should include a main service to run models for inference and
the explainability service for the models loaded with the main service. In order
to run a model for inference, we need a trained model in a well-known format
and the amount of resources for the model. Ideally, the service should support all
the file formats produced by the de-facto standard tools (just like PyTorch and
TensorFlow), but it is not enough to be able to read and run the model file, since
we also need the architecture used in the model (e.g., it is not easy to inspect a
model to understand whether it is similar to an encoder-only transformer). We
also need to size the hardware to run the model, which again is not obtainable
by inspecting the model: the size of RAM needed to run a Mixture-of-experts
model is not linearly dependent on the number of model parameters, because
during inference only a fraction of the parameters are loaded into RAM. In Fig.1,
we show the OpenAPI code to load the model.

Besides the main service access point, we should also provide at least three
different access points to explainability services. Depending on the model type
(or architecture) to be explained, we could apply a subset of methods, e.g., the
following three classes (whose OpenAPI code is in Figures 2 through 4):
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"/load_model/": {
"post": {

"summary": "Load Model",
"operationId": "load_model_load_model__post",
"parameters": [{

"name": "model_file_url", "in": "query", "required": true,
"schema": { "type": "string", "format": "uri", "minLength": 1}

}, {
"name": "model_type", "in": "query", "required": true,
"schema": {"$ref": "#ArchitectureType"}

}, {
"name": "resources_to_allocate", "in": "query", "required": true,
"schema": {"type": "string", "title": "Resources To Allocate"}

}],
"responses": {

"200": {
"description": "Successful Response",
"content": {

"application/json": {
"schema": {"$ref": "#ModelAllocated"}

}
}

},
"422": {

"description": "Validation Error",
"content": {

"application/json": {
"schema": {"$ref": "#HTTPValidationError"}

}}}}}},

Fig. 1. OpenAPI specification for load model API

Features’ scores , including the methods providing an importance score for
each input feature. A major method in this class is GradCAM, applicable
to any CNN-based architecture and returning a matrix of scores to be pro-
jected on the input image to produce a saliency map, plottable as a heatmap
showing the most important pixels in the input image. In order to apply this
method, we first need to know the architecture used since the computation
of the convolutional part is carried out separately from the classification (or
regression) head mounted on the convolutional layers.

Surrogate model , including the methods providing a surrogate model (often
a linear one) locally approximating the original model. The surrogate model
obtained should roughly provide the same output as the original model, but
its quality (its accuracy) degrades as we move away from the local neigh-
bourhood for which the surrogate model was generated. A major method in
this class is LIME, where the most important regressors in the linear model
represent the most relevant features to explain the model. LIME is model-
agnostic, so that we can dispense with the need to know the architecture of
the ML model to be explained.

Model internal observation , including the methods that just plot the inter-
nal parameters of the models. For instance, for transformer-based architec-
tures we could plot the attention weights learned in different layers of the
model. The only computation performed in this case is the aggregation of
multi-head attention weights. For this type of approach, we first need the
model architecture and then check whether this architecture is supported by
the observation methods provided by the platform.
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"/model_inspect/": {
"post": {

"summary": "Model Inspect",
"operationId": "model_inspect_model_inspect__post",
"parameters": [{

"name": "allocation_id", "in": "query", "required": true,
"schema": {"type": "string"}

}, {
"name": "section_of_model_to_inspect", "in": "query", "required": true,
"schema": {"type": "string"}

}, {
"name": "method", "in": "query", "required": false,
"schema": {"type": "string", "default": "auto"}

}],
"requestBody": {

"required": true,
"content": {

"application/json": {
"schema": {"$ref": "#Body_model_inspect_model_inspect__post"}

}
}

},
"responses": {

"200": {
"description": "Successful Response",
"content": {

"application/json": {
"schema": {"$ref": "#SampleExplanationModelInspect"}

}
}

},
"422": {

"description": "Validation Error",
"content": {

"application/json": {
"schema": {"$ref": "#HTTPValidationError"}

}}}}}},

Fig. 2. OpenAPI specification for model inspect API

"/features_scores/": {
"post": {

"summary": "Features Scores",
"operationId": "features_scores_features_scores__post",
"parameters": [{

"name": "allocation_id", "in": "query", "required": true,
"schema": {"type": "string"}

}, {
"name": "method", "in": "query", "required": false,
"schema": {"type": "string", "default": "auto"}

}],
"requestBody": {

"required": true,
"content": {

"application/json": {
"schema": {"$ref": "#Body_features_scores_features_scores__post"}

}
}

},
"responses": {

"200": {
"description": "Successful Response",
"content": {

"application/json": {
"schema": {"$ref": "#SampleExplanationFeaturesScores"}

}
}

},
"422": {

"description": "Validation Error",
"content": {

"application/json": {
"schema": {"$ref": "#HTTPValidationError"}

}}}}}},

Fig. 3. OpenAPI specification for features scores API
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"/surrogate_model/": {
"post": {

"summary": "Surrogate Model",
"operationId": "surrogate_model_surrogate_model__post",
"parameters": [{

"name": "allocation_id", "in": "query", "required": true,
"schema": {"type": "string"}

}, {
"name": "method", "in": "query", "required": false,
"schema": {"type": "string", "default": "auto"}

}],
"requestBody": {

"required": true,
"content": {

"application/json": {
"schema": {"$ref": "#Body_surrogate_model_surrogate_model__post"}

}
}

},
"responses": {

"200": {
"description": "Successful Response",
"content": {

"application/json": {
"schema": {"$ref": "#SampleExplanationFeaturesScores"}

}
}

},
"422": {

"description": "Validation Error",
"content": {

"application/json": {
"schema": {"$ref": "#HTTPValidationError"}

}}}}}}

Fig. 4. OpenAPI specification for surrogate model API

5 Pricing models

None of the ML platforms in Section 3 offers explainability as a separate service
from ML provisioning. Rather, it is offered as a built-in feature of ML models,
which is not priced separately. In this section, we first review the pricing mod-
els adopted by platform providers for ML provisioning and then examine the
characteristics of a pricing model for XaaS.

The pricing policies adopted by the platforms can be classified again into
two categories based on the platform providers themselves: big providers offering
cloud services and small providers more devoted to the product.

For big providers, the main cost is linked to the amount of resources used
during model training and inference, with a pay-as-you-go plan where either
a little or no cost at all is added. For example, Azure offers a pay-as-you-go
scheme where computing capacity is metered by the second, with no long-term
commitments or upfront payments, and increasing or decreasing consumption on
demand. However, a savings plan can be subscribed, where customers commit to
spend a fixed hourly amount for 1 or 3 years. Similarly, Amazon’s Sagemaker of-
fers an On-Demand Pricing scheme (metered by the hour) with neither minimum
fees nor upfront commitments, as well as Savings Plans. In Google’s AutoML, a
price per node hour is proposed based on the specific operation, e.g., Training,
Deployment and online prediction, or Batch prediction. Small providers instead
apply pricing policies based on a monthly fee covering all the services offered
by the platform. BigML offers a set of plans differing for the size of datasets
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supported and parallel tasks. ObviouslyAI offers a single plan with higher costs
and limitations on the number of predictions provided.

Since XaaS would require a dedicated pricing policy, how can we attach a
price to explainability? Here, we do not provide specific indications, but we can
describe some constraints based on the nature of XaaS. First, we notice that you
cannot get an explanation if you do not set an ML model first, so the demand
for XaaS cannot be greater than that for ML. We also envisage that the price
of XaaS should be lower than that of ML model provisioning. In addition, we
can consider XaaS as a complement of ML (rather than a substitute), so that
the demand and prices of ML model provisioning and XaaS should be related.
Precisely, we expect the demand for XaaS to be negatively impacted by the
price of ML model provisioning as well as by its own price. Since ML modelling
can take place without explainability, but not the reverse, we can classify the
relationship between the two services as a one-way essential complement, where
ML provisioning is essential while XaaS is optional [7].

As to the market structure, we have a case of natural vertical integration,
where the providers of ML and XaaS coincide. When the value of the option
(XaaS) is smaller than the essential service (ML) and marginal costs are zero, the
provider would choose to price the option at zero (what the providers are doing
today) [7]. The joint monopolist would give XaaS away and earn all its profits by
selling ML provisioning. Providers offering ML would, therefore, include XaaS
in a bundle package and compete on the quality and prices of ML provisioning.

6 Conclusions

We have set the case for adding explainability as a service to ML model provi-
sioning. Currently, explainability is provided as a side output of ML provisioning.
However, providing XaaS would allow users to cast specific requests and get the
explainability they wish. Our description of the service relying on the OpenAPI
standard can be employed as a first step in that direction. We have sketched
the service primitives for three types of XaaS output, showing the variety of
service features that users can get with respect to the current offer where XaaS
is offered on an as-is basis. However, ML provisioning and XaaS are actually not
two totally separate services, their relationship being that of one-way essential
complementarity. This may have some effect on pricing. Though listing XaaS as
a separate service would allow the provider to set separate prices, under certain
conditions, the best option for the provider may be to include XaaS in a bundle
package with ML and practically offer XaaS for free. We expect to examine the
impact of XaaS bundle offer on competition in future works.
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