
Efficient Placement of Interdependent Services
in Multi-access Edge Computing

Shuyi Chen1,2[0000−0003−0745−4083], Panagiotis
Oikonomou3[0000−0002−5564−2591], Zhengchang Hua1,2[0000−0002−3970−6129],
Nikos Tziritas3[0000−0002−2091−2037], Karim Djemame2[0000−0001−5811−5263],

Nan Zhang1[0000−0002−5728−0440], and Georgios
Theodoropoulos1[0000−0002−7448−5886]⋆

1 Southern University of Science and Technology, Shenzhen, China
2 University of Leeds, Leeds, UK

3 University of Thessaly, Lamia, Greece

Abstract. The rise of 5G fuels multi-access edge computing (MEC),
a transformative computing paradigm that leverages edge resources for
low-latency mobile access and complex service execution. Deploying ser-
vices across geographically distributed edge nodes challenges providers
to optimize performance metrics like latency and resource efficiency, im-
pacting user experience, operational cost, and environmental footprint.
In the context of service scheduling with data flow dependencies, we
propose heuristic-based service placement algorithms that balance mini-
mizing latency and maximizing resource efficiency. Our algorithms, eval-
uated in a simulated environment using state-of-the-art workload bench-
marks, achieve significant energy consumption improvements while main-
taining comparable latency.

Keywords: Service placement · Multi-access edge computing · Task de-
pendency graph.

1 Introduction

Driven by the advent of fifth generation (5G) network, multi-access edge com-
puting (MEC) emerges as a transformative paradigm by leveraging network and
computing resources at the network edge. This proximity offers low-latency ac-
cess for mobile subscribers and facilitates the execution of complex, computation-
ally intensive applications [9]. However, effectively managing custom applications
in MEC requires strategic task offloading. This involves strategically assigning
tasks to the most suitable computing nodes, balancing the demands of both users
(low latency) and providers (resource efficiency). Jobs submitted by users may
surround IoT data processing, healthcare, Augmented Reality(AR)-based expe-
riences or financial services. The offloading process considers the application’s
underlying requirements, and allocates sufficient resources at the edge to ensure
their successful execution.
⋆ Corresponding author

2 S. Chen et al.

Quality of Service (QoS), a measure of service effectiveness, is paramount
for service providers in MEC. Delivering optimal QoS involves meeting multiple
objectives such as latency, bandwidth, and availability. Providers achieve this by
meticulously coordinating network and computing resources, down to individual
task allocation [10]. Beyond QoS, profitability remains a key concern. Minimising
server rental costs and power consumption directly impact profits and contribute
to a more sustainable industry. However, achieving these goals often involves
trade-offs [15]. Striking a balance between user satisfaction (low latency) and
provider needs (cost efficiency) presents a multi-objective optimization problem.
While existing research offers solutions for various scenarios, they may lack the
necessary universality and flexibility required for the dynamic nature of MEC
environments and complex applications.

Beyond managing the distributed nature of MEC resources, the placement of
services presents an additional challenge. In real-world applications, numerous
interdependent components frequently collaborate [16]. Each component exe-
cutes a specific task such as data extraction, transformation, loading, or integra-
tion. The optimal placement of these components has to fulfil the requirements
of each component with dependency guarantees.

Existing service placement strategies in edge computing struggle to effectively
handle these complex, dependency-aware applications. Traditional methods of-
ten overlook the inter-dependencies of application modules, or leverage a specific
architecture or model. To address this gap, we propose service placement ap-
proaches specifically designed for Cloud-MEC environments, aiming at efficiently
allocate resources for complex service execution and fulfill both user and provider
demands. Offloading occurs at edge nodes located close to user devices, where
computational tasks are transferred to reduce latency. Computation-intensive
tasks may also be offloaded to powerful cloud data centers.

This work addresses the service placement problem with precedence con-
straints among service applications. Our objective is to improve quality of ser-
vice (QoS), specifically minimizing latency, and optimize resource efficiency,
measured by energy consumption. The inherent complexity of considering these
multiple factors motivates our development of two novel heuristic-based place-
ment algorithms. These algorithms strive to achieve a balance between minimiz-
ing user-experienced latency and energy consumption. Our contributions in this
work are twofold:

– Dependency-aware Service Placement Algorithms: We propose two novel
service placement algorithms specifically designed for the multi-access edge
computing (MEC) environment. These algorithms consider precedence con-
straints between service components to optimize both end-to-end latency
and dynamic energy consumption.

– YAFS Platform Extension: To support the evaluation of our algorithms, we
developed an extension 4 to the YAFS simulation platform [6]. This extension
enables the modeling of sequential task processing, a crucial aspect of service
execution in MEC.

4 https://github.com/Sukiiichan/YAFS_MEC

https://github.com/Sukiiichan/YAFS_MEC

Efficient Placement of Interdependent Services in MEC 3

The remainder of this paper is organized as follows. Section 2 briefly summa-
rizes existing approaches and identifies the research gap. Section 3 describes the
system models and problem formulation. Section 4 proposes our two algorithms
in detail. Simulation results are presented in Section 5, and the paper concludes
in Section 6.

2 Related work

The multi-objective placement problem has attracted significant research at-
tention, with solutions targeting diverse deployment scenarios and optimization
goals. For example, [3] solves the joint user association and service function
chain (SFC) placement problem in 5G networks, [5] proposed resource manage-
ment schemes for Industrial IoT applications in Cloud-Edge networks. Thorough
survey of literature surrounding the placement problem in various computing
paradigms can be seen in [10]. However, many existing work differ from ours in
the underlying assumptions and granularity of problem-solving. For instance, the
aforementioned approaches leverage a Kubernetes-based architecture that limits
its applicability. Consequently, their application to our context is not feasible.

Existing task offloading research often investigates coarse-level abstractions
of applications and overlook the task dependencies, which may be sufficient for
jobs with less stringent latency requirements, while a number of approaches
employ fine-grained service placement strategies that account for inter-service
dependencies and allow more precise control for latency-sensitive applications.
[7] extracts the function-level dependencies from the application using analysis
tools. [8] studies the offloading of sub-tasks with dependencies and the allocation
of communication resources in unmanned aerial vehicles assisted MEC systems.
The approaches mentioned above either reduces a single metric, or incorporate
specific strategies such as service replication. While in our work, we aim to reduce
both the total energy consumption and latency throughout application execution
without resorting to service replicas.

Service placement solutions typically target various objectives, including min-
imising end-to-end latency [2, 3], reducing costs [16], lowering energy consump-
tion [4], and improving resource utilization [13]. In the context of multi-objective
optimization problems, researchers have employed a diverse set of approaches,
including heuristics, meta-heuristics, and deep reinforcement learning, to achieve
a balance between different objectives. For example, [17] proposes a joint place-
ment algorithm for non-scalable services, balancing latency and deployment cost.
Our proposed algorithms aim at optimising both user experience and energy effi-
ciency. We strive to minimise end-to-end latency and reduce the dynamic energy
consumption caused by computations.Several prior studies have explored optimi-
sation objectives that converge with those targeted by our proposed approach.
While work like [15] explore the energy-delay trade-off using monolithic task
scheduling, it lacks dependency awareness. More recently, [16] presents a task
offloading scheme for dependent tasks, jointly optimising latency and energy.
However, their focus is on local execution vs. edge offloading, while ours lever-

4 S. Chen et al.

ages both Multi-access Edge Computing (MEC) and cloud resources. Similarly,
regarding the energy consumption optimisation in dependency-aware placement
strategies, [8,12] primarily focus on minimising energy consumption at the user
device level.

Our work departs from the existing literature by considering a more realistic
and intricate scenario that incorporates Cloud-MEC network characteristics and
inter-service dependencies, and optimising energy consumption across the entire
system comprehensively. We propose two heuristic-based algorithms designed for
fast execution. These algorithms optimise user-experienced latency and minimise
the overall energy consumption associated with task execution, allowing for a
holistic optimization of both QoS and environmental sustainability.

3 System model and problem formulation

3.1 MEC network model

Our work considers a multi-tier Cloud-MEC network infrastructure (Figure 1)
where micro datacenters (MDCs) act as resource pools at the edge, residing at
interconnected mobile stations. Within each MDC, two key entities exist: edge
computing servers available for service deployment and execution, and data
sources that provide data flow from databases, sensors, and IoT devices with-
out performing computations locally. Query-requests from various user devices
can be concurrently handled by the MEC. The multi-access edge network is con-
nected to a resource-rich cloud data center (Cloud DC).

We model the Cloud-MEC network topology as a graph: G = (M,L). M =
{m1,m2, ...mn} refers to the set of n MDCs and Cloud DC, and L = {l1, l2, ...lp}
represents the set of network connections between the DCs. The set of computing
servers maintained by MDCmi can be expressed as Si = {si,1, si,2, ...si,m}, while
Di = {di,1, di,2, ...di,k} indicates the data sources connected to the local network
of mi. Server specifications of each si ∈ S are given by {γsi , µsi , fsi}, represent-
ing respectively the memory capacity, storage capacity and CPU frequency. For
every network link l ∈ L, the two MDCs connected through it are expressed as
(lsrc, ldst). The link bandwidth of l is denoted by bl, and the propagation delay
of l is a constant value propl.

3.2 Application model

We use the directed acyclic graph (DAG) to establish the application model.
The application A that the user equipment (UE) requests to execute can be
represented in the form of a DAG A = (V,E). V = {D,O} is the set of nodes
composing the application, and E is the directed edge set representing dataflow
dependencies between the modules. We let D = {d1, d2, ...dm} to represent the
data sources involved in the application, and use O = {o1, o2, ...on} to indicate
the set of service modules that are responsible for dataflow processing operations.
The end user is denoted by U .

Efficient Placement of Interdependent Services in MEC 5

MDC

base station

result

mobile subscriber

query

Sensor

Database

S2

S3

S4 Result
Output

source userservice modules

S1

network link

Cloud DC

Fig. 1: An example Cloud-MEC network and an example app.

Each service module oi ∈ O represents a processing operator or function,
with a set of properties {αoi , θoi , ωoi} denoting the memory, storage and CPU
cycles it requires to process each task. Modules with no predecessors that require
input from outer data sources are called entry modules. Similarly, we refer to the
modules without successor nodes as exit modules. The outputs of all exit nodes
will be directed to the end user. Each edge e in the set E = {e1, e2, ...eo} has
an attribute δe representing the size of each packet transmitted. The start node
estart of the directed edge e is the source module sending data packets through
the edge, and the end node eend is the destination. Our processing model adheres
to the following assumptions: (i) a service is triggered only when it has received
inputs from all its predecessors, (ii) each task represents the minimal unit of
work and is indivisible, and (iii) each service node sends results to its successors
only after finishing its task processing.

3.3 Problem formulation

Communication and computation model. The communication time T comm
e,l

for a data packet corresponding to DAG edge e to be transmitted through net-
work link l can be calculated by summing up the data transmission time (packet
size δe divided by bandwidth bl) and the propagation delay, as expressed in Eq.
1. The deployment plan of a service module o is denoted by P (o), which is a
mapping from service module o to server s. For a DAG edge e and its two ver-
tices ostart, oend, we assume these two modules are offloaded to servers si and sj
respectively. We use path(si, sj) = {l1, l2...ln} to denote the routing path from
server si to sj . When the predecessor module ostart sends a data packet to the
successor oend, the communication delay is calculated by summing up the trans-
mission delay and propagation delay along the routing path. Therefore, the total
communication delay is obtained by Eq. 2. Additionally, between two services
deployed in the same MDC, we assume a constant network delay.

T comm
e,l = δe/bl + propl (1) T comm

e,sisj =

path(si,sj)∑
l

(
δe
bl

+ propl) (2)

Assume that any computing server si runs at a constant frequency fsi when
processing tasks, given the workload required by a service module o to process

6 S. Chen et al.

a data packet requiring ωo CPU cycles, the execution time can be calculated by
Eq. 3.

T exec
o,si =

ωo

fsi
(3) T exec

o|n = T exec
o ∗K(n) (4)

For multiple service modules operating concurrently on the same server, the
overhead caused by resource contention among the services is introduced by
an overhead function K. K(n) denotes the overhead coefficient for the multi-
tenancy scenario of n service modules deployed on one server.When n service
modules including o are deployed on the same server and sharing resources, the
task processing time of o is calculated by Eq. 4.

According to Section 3.2, for service modules with multiple predecessor nodes,
the service module will not start the task execution until data packets from all
the predecessors have arrived. The waiting time caused during this process affects
the user-experienced delay. Therefore, for a service module o, the earliest time it
starts processing tasks is decided by its most time-consuming predecessor. For
o with its predecessors pred(o), we obtain its Earliest Start Time (EST) by:

EST (o) = max
oi∈pred(o)

{
EST (oi) + T exec

oi + T comm
oi,o + T prop

oi,o

}
(5)

Thus the end-to-end latency experienced by user U is EST (U).
Energy consumption model. We drive the dominant, dynamic energy con-
sumption of each server by calculating its dynamic power consumption over time.
According to [15] and Eq. 3, assuming the supply voltage of the CMOS circuits
and CPU operating frequency are linearly dependent, for a server running a ser-
vice module o, the dynamic energy consumption during the processing period
of a task is approximated by ECdynamic = βf2ωo, where β represents a device
related factor.

Placement problem formulation. The objective of the present problem is
to minimise the user-experienced latency and reduce overall dynamic energy
consumption. The solution should be an appropriate mapping from the service
nodes to the servers. We call a placement plan valid only if all the service modules
are assigned to servers with sufficient resources and all the constraints are met.
In light of this, we formulate the conditions that make a placement plan valid:
(i)Given the set of service modules O to place and the set of available servers in
the Cloud-MEC environment G, each service in O should be mapped to a server
in G. We formulate such a progress as a mapping function P , let S denote the set
of all servers in the network, then P : O → S indicates a complete deployment of
all services. (ii)The summation of resource occupancy for all assigned modules
should not violate the capacity of the server.

Φs = {o | o ∈ O,P (o) = s}
∀s ∈ S

∣∣∣∣ ⇒
{∑

o∈Φs
θo ≤ µs∑

o∈Φs
αo ≤ γs

(6)

(iii)Aside from these basic conditions, various optimisation goals may exist. In
this work, our focus is to minimise user-experienced latency and overall energy
consumption, therefore the multi-objective optimisation problem can be formu-
lated as: Opt : min EST (U),min

∑
s∈S ECs.

Efficient Placement of Interdependent Services in MEC 7

4 Energy-and-latency-aware placement algorithms

4.1 Energy-aware delay-experienced minimisation algorithm

The proposed service placement algorithm, Energy-aware delay-experienced Min-
imisation (EDEM), adopts a two-stage approach to achieve a balance between la-
tency minimisation and energy consumption reduction. In the first, coarse-grain
stage, EDEM determines a service-to-MDC deployment plan that prioritises re-
ducing end-to-end latency. Subsequently, the fine-grain stage refines the server
deployment plan within each MDC, focusing on optimising energy consumption
without affecting the overall latency.

Coarse-grain scheduler: The critical-path-based coarse-grain scheduler
seeks a balanced configuration with minimal transmission latency and max-
imized processing efficiency, leading to the lowest overall end-to-end latency.
The pseudo-code of the coarse-grain scheduler is presented in Algorithm 1. We
use S(A) to denote the state space of services in application A, consisting all
service-to-MDC placement options. The scheduler explores S(A) by post-order
traversing all placement options of the service modules in A. According to Eq.5,
the calculation of EST for any service v rely on the EST value of all its prede-
cessor modules v.predecessors. Following such rule, the scheduler can estimate
the EST for each service, paving the way for critical-path selection.

The critical path selection works in a greedy and optimistic fashion. Starting
from the bottom, for each visited service v, given the set of available MDCs M ,
the value of EST (v) will be estimated assuming v resides at the least-loaded
server m.leastloaded in each MDC m ∈ M . For each predecessor v.pred of v,
knowing its estimated EST values [EST (v.pred,m1), EST (v.pred,m2), ...], the
pair (v.pred,m) that produces the minimum estimated EST will be selected.
Among all the selected predecessor-MDC pairs, the one with the maximum EST
value will be chosen and marked as a critical node, and the criticality of non-
critical modules becomes the EST value difference between it and the critical
node in the same hierarchy. Such operation will be repeated until the exit node
is reached. Thus we get the critical path reflecting the MDC allocation plan
for the critical modules, while non-critical modules remain unassigned. At this
stage, the load status of the MDCs involved in the MDC allocation plan will be
updated, so is the least-loaded server m.leastloaded of each MDC m ∈ M . Then
the max-min procedures will be resumed for the non-critical modules, until their
MDC allocation plan is decided.

Fine-grain scheduler: Having the service-to-MDC placement plan decided
in the coarse-grain stage, for each MDC involved, a fine-grain scheduler runs
to drive the module-to-server placement solution. The fine-grain scheduler tries
to place modules on less power-consuming servers, under the premise that the
end-to-end latency of critical nodes will not be affected. Critical modules will
take priority in placement, followed by non-critical modules. The pseudo-code
of the fine-grain scheduler is presented as Step 3 in Algorithm 1. Similar to the
design of the coarse-grain scheduler, all service-to-server placement options will
be considered. The scheduler estimates the earliest start time of every service

8 S. Chen et al.

module regarding each available server in the local MDC. Holding the rule that
the EST value of modules on non-critical branches should not exceed the EST
of critical modules on the same hierarchy, for each possible placement option
(v, s), we calculate the value of EST (v, s), and remove the ones that violate
the rule. The remaining placement options are marked as ’valid’, and the one
with the minimum energy consumption EC(v, s) will be chosen and added to
the placement plan. The energy consumption will be approximated according to
3.3. Once a service placement decision is finalised, the load status of the server
involved will be updated, and the estimated EST of affected placement options
will be recalculated. Such process will be repeated until all the service modules
are mapped to exact servers.

Algorithm 1: EDEM

Data: App. A = (V,E), MEC G = (M,L)
Result: Server placement map P : O → S
1. Coarse-grain stage:
Initiate S(A) ∀v ∈ V, ∀m ∈M ; CP = ∅;
Explore S(A) using post-order traversal:
for v.pred ∈ v.prdecessors do

for m ∈M do
Compute EST(v.pred,m);

end
Select (v.pred,m) with min
EST(v.pred,m);

end
CP ← (v.pred,m) with max(EST(v.pred,m));
Compute Criticality(v);
2. Fine-grain stage:

for (v,m) ∈ critical path do
Initiate S(V) ∀s ∈ m.servers;
for s ∈ m.servers do

if EST (v, s) ≤ Criticality(v) then
Compute EC(v,s);

end
Assign v to s with min EC(v,s);
Update load status of s;

end
for (v,m) /∈ critical path do

Initiate S(V) ∀s ∈ m.servers;
for s ∈ m.servers do

if EST (v, s) + Tcomm(v, v.succ) ≤
Criticality(v.succ) then

Compute EC(v,s);
end
Assign v to s with min EC(v,s);
Update load status of s;

end

4.2 Delay-aware energy minimisation algorithm (DEM)

DEM prioritizes energy efficiency by first seeking an energy-saving server place-
ment plan. Unlike EDEM, which prioritizes latency first, DEM focuses on mini-
mizing energy consumption in the initial stage. This is followed by a refinement
stage that fine-tunes the placement plan to optimize latency without exceeding
the established energy constraints. DEM can be broken down into the 3 steps:
Step 1: All available servers in the MEC network are sorted by the device-
related energy consumption coefficient, in ascending order. Then a level-order
traversal of the application graph starts from the entry modules. At each layer,
modules are randomly assigned resources from the pre-ranked server list. After
the assignment, DEM estimates the EST value for each module, using Eq. 5.

Step 2: While Step 1 prioritizes energy-efficient servers, it might not guar-
antee minimal total energy consumption. This is because geographically distant
placements of dependent modules can lead to longer data transmission times and
increased server idle energy usage while waiting for packets. To address this, a
refinement stage iteratively explores alternative placements for each service mod-
ule. For each module, all unexplored MDCs (excluding its current location) are
considered. Within each unexplored MDC, the least power-consuming server is
evaluated for potential reassignment. The algorithm estimates the total energy

Efficient Placement of Interdependent Services in MEC 9

consumption EC after each potential reassignment and updates the placement
plan if a more energy-efficient configuration is found. Finally, the refined place-
ment’s overall latency EST (U) and total energy consumption

∑
s∈S EC(s) are

calculated and stored for the next stage.
Step 3: Building upon the refined resource allocation (Step 2), DEM also

focuses on improving user-experienced latency. Similar to EDEM’s fine-tuning, it
identifies critical modules through the application’s critical path. For each critical
module, it explores reassignment to alternative servers intending to reduce the
critical path’s estimated latency. After each reassignment, the critical path is
recalculated to reflect potential latency improvements. This iterative process
continues until no further latency reduction is possible. The resulting placement
plan, balancing energy efficiency and latency, is then used to generate the final
module-to-server mapping. The pseudo-code of DEM is presented in Algorithm 2.

Algorithm 2: DEM

Data: Application A = (V,E), MEC network
G = (M,L)

Result: Server placement map P : O → S
1. Server sorting and initial service
assignment:

Sort all servers s ∈ G by coeff (s);
curServerIdx ← 0;
Group service from level n to 0 and shuffle each
set Sn, ...S0

for service v ∈ Sn, ..., S0 do
Assign v to server with index curServerIdx ;
curServerIdx++;

end
for v ∈ V do

Compute EST(v,P(v)) using Eqs;
end
2. Energy-aware reassignment:

for v ∈ V do
for m ∈M do

if P (v) /∈ m then
s = argmins′∈m.servers coeff(s

′);
if EST(v,s)<EST(v,P(v)) then

Assign server s to v;
end

end
Compute EST(U) using Eqs;
Sum up EstimatedEC(v, P (v)) ∀ v ∈ V ;
3. Latency-aware reassignment:
Identify critical path of A under placement P ;
for (v, P (v)) ∈ critical path do

for s ∈ P (v).mdc.servers do
if EST (U) > EST (U |P (v) = s) then

Assign server s to v;
Re-identify critical path of A;

end

end

5 Experimental Evaluation

5.1 Performance Indicators & Setup

We employed simulation to evaluate the performance of the proposed algorithms
(DEM and EDEM). The YAFS fog simulator [6] was used and extended to sup-
port sequential processing of dependent tasks. Network topologies were created
using the NetworkX library5. These topologies consisted of up to 20 datacenters,
one acting as the cloud and the others as micro edge datacenters. Each datacenter
housed up to 5 computing servers. Details regarding the specific MEC network
configurations are provided in Table 1. Three different random graph generation
models were utilized: Barabasi-Albert (B-A) [1], Watts-Strogatz (W-S) [14], and
ring topology. To achieve more general results, real-world workloads were utilized
from the Alibaba6 cluster trace dataset. This dataset provides Directed Acyclic
Graph information of production batch workloads from a large-scale cluster.

5 https://networkx.org/
6 https://github.com/alibaba/clusterdata

https://networkx.org/
https://github.com/alibaba/clusterdata

10 S. Chen et al.

Jobs composed of computing and algorithm services as well as statistical and
data processing services, were submitted by users. We filtered applications ex-
ceeding 10 modules and selected 10 for evaluation (Table 2). Module resource
requirements were configured based on the provided traces. For each experiment
set, system events were simulated for 20,000 global timestamps and repeated 5
times with identical configurations to generate statistically significant averages.
The simulations were conducted on a server with 4x Intel Xeon Gold 6230N
CPU, 256GB of RAM and Ubuntu 20.04 operating system.

The proposed algorithms (DEM and EDEM) were evaluated based on four
key metrics: i) Overall Energy Consumption (EC): This metric represents the
total power consumed by all servers during the execution period, estimated from
CPU usage data according to 3.3. ii) Average User-Experienced Latency (LT):
This metric is the mean response time of user requests, calculated from raw
timestamps recorded by the simulator during network transmissions. iii) Edge
prioritization (EP): This metric reflects the percentage of services deployed at
the Edge, iv) Algorithm Execution Time (ET): This metric indicates the time
required for the algorithm to generate a placement, i.e. the wall clock time for
executing each algorithm. The performance of DEM and EDEM was compared
against four existing algorithms: Response Time Aware (RTA) [2], Genetic Al-
gorithm (GA) [11], Maximize Reliability Offloading (MROA) [12] and Energy-
Makespan Multi-objective Optimization(EM-MOO) [4]. We selected these algo-
rithms for their varying complexity, computational overhead, and optimization
goals, providing a broader assessment of DEM and EDEM’s efficiency.

Cloud MDC

CPU frequency (GHz) [3,5] [1,2]
RAM (GB) [32,64] [1,4]
Propagation Delay (ms) 8 1
Bandwidth (Gbps) 10 2

Table 1: Configurations

id |V | |E| Max
degree

Average
transfer volume

Average
workload

0 12 9 3 39.33 9.50
1 16 17 6 29.00 257.88
2 16 17 7 23.63 40.50
3 17 17 5 42.82 13.53
4 16 17 3 46.06 35.75
5 12 11 6 38.67 8.17
6 10 10 4 44.30 14.40
7 10 9 5 35.60 7.10
8 16 16 2 47.19 1.00
9 10 9 4 43.40 32.70

Table 2: Application characteristics

5.2 Performance Assessment

In total, we conducted 8100 experiments, consisting of 5 experiments for each
of the 6 algorithms and for each of the 10 applications. We varied the num-
ber of MDCs (denoted by n) between [5, 10, 20], and the number of servers
(denoted by m) within each MDC to [2, 4, 8]. Also, we utilized three different
network topologies. All figures presented in this section demonstrate the normal-
ized performance of both EC and LT metrics. We set the source data emission
interval to 100ms and the simulated time to 100s and plot the performance
of the proposed algorithms in terms of the aforementioned metrics. In Fig. 2,
we show the normalized energy consumption for all algorithms. It can be seen
that during the experiments using varied applications and under varied network
typology, the DEM algorithm achieves significantly lower energy consumption

Efficient Placement of Interdependent Services in MEC 11

compared to other algorithms, while RTA and MROA reaches the highest en-
ergy consumption. This is because RTA merely searches for the placement plan
that may shorten the end-to-end latency, therefore less energy-efficient servers
are chosen, and the overall energy consumption is sacrificed; MROA focuses
merely on lowering the energy consumption of the user equipment, rather than
that of the servers involved in task offloading, therefore the total energy con-
sumed for task processing is rather high. DEM, on the contrary, tends to allocate
services to edge servers with higher energy efficiency. Follwing DEM, EDEM
also achieves energy consumption levels comparable to those of the GA and
EM-MOO. Across diverse network topologies, DEM and EDEM maintain stable
performances in terms of normalised energy consumption, while EM-MOO falter
under the Watts–Strogatz network model. This proves that DEM and EDEM
are robust to network variations.

Fig. 3 demonstrates the normalized latency. We can observe that RTA,
EDEM and MROA reach the lowest latency under all the scenarios. It should
be highlighted that RTA and MROA sacrifice energy efficiency to achieve their
performance, whereas EDEM maintains metrics. GA tends to demonstrate the
worst performance for all network topologies while EDEM excels in certain ap-
plications. Specifically, in the ring topology, EDEM provides better latency per-
formance which is crucial when network latency poses a significant bottleneck.
Combining the results from Fig. 2 and Fig. 3, we can state that, compared to
existing works, DEM and EDEM hold different degrees of preference for reduc-
ing energy consumption and lowering latency. EDEM effectively balances overall
energy consumption and latency. On the other hand, DEM prioritizes energy-
saving placement plans, potentially sacrificing latency to some extent.

Figs 4, 6 reveal that for the EC metric, the DEM and GA algorithms show the
most significant improvements and efficiency when increasing either the number
of MDCs or servers, while MROA consistently underperforms. EMMOO shows a
slight decrease in energy consumption as the number of resources increases. Al-
though EDEM is not the best choice, it demonstrates stable performance, making
it a reasonable option. For the LT metric, RTA, EMMOO, and DEM perform
better when increasing the number of MDCs, with EDEM following closely be-
hind (Fig. 5). GA and MROA struggle with scalability in reducing latency as the
system becomes more complex. In Fig 7, we observe that increasing the number
of servers generally worsens latency performance for most algorithms. Although
GA shows some improvement as the number of servers increases, it still cannot
effectively optimize latency as the system scales up, compared to the other algo-
rithms. EDEM, similar to its performance with the EC metric, remains stable,
making it the best candidate when the number of servers exceeds four. Table 3
offers a breakdown of service deployment across edge servers and the cloud. The
number shown in the table represents the percentage of services deployed at the
edge. The results of MROA align with our analysis: it greedily selects non-local,
powerful machines. Consequently, around 40% of the services are offloaded to the
cloud, resulting in the highest energy consumption observed. RTA and EDEM
have similar preferences in adopting resources. Around 75-85% of the services

12 S. Chen et al.

Fig. 2: EC, n=20 m=4 Fig. 3: LT , n=20 m=4

are deployed at edge facilities, with the remaining tasks executed on the cloud.
Such approach achieves a well-balanced outcome in terms of both latency and
energy consumption: performing most computations at the edge helps to reduce
transmission and energy costs, while offloading a select few, computationally
intensive tasks to the cloud minimises processing time. By deploying over 95%
of services at the edge, DEM, EMMOO and GA demonstrate the strongest ten-
dency to utilise edge resources. Prioritising edge placement leads to the lowest
energy consumption, but as a consequence of the energy-latency trade-off, the
task execution time may not be as low as cloud execution, potentially sacrificing
user-experienced latency.

The execution time of each algorithm is presented in Table 4. As expected,
GA exhibit the longest execution times (∼4s), followed by EMMOO (∼1s), due
to their population-based search and iterative nature, respectively. Conversely,
MROA achieves the fastest execution times across all topologies because its
operations related to latency and energy consumption limitations are skipped
when no deadline constraints are set. RTA achieves the second fastest execution
times across all topologies as it focuses solely on a single objective. EDEM and
DEM demonstrate execution times comparable to RTA, thus can be adopted
to respond in real-time and time-sensitive applications at the MEC. We also
conducted an additional set of experiments to assess the impact of a MEC en-
vironment. In these experiments, we assumed a setup with 4 MDCs, 1 Cloud
DC, and a BA topology. The results show that, on average, latency is reduced
by 46.8% and energy consumption by 32.9% when scheduling decisions select
resources from the edge-cloud continuum instead of relying solely on cloud re-
sources.

6 Conclusions and future work

This paper introduces EDEM and DEM, two algorithms for service module
placement in MEC networks that consider dependencies between service mod-
ules. EDEM prioritizes energy efficiency while maintaining low latency impact

Efficient Placement of Interdependent Services in MEC 13

Fig. 4: EC, n=[5,10,20] Fig. 5: LT , n=[5,10,20]

Fig. 6: EC, m=[2,4,8] Fig. 7: LT , m=[2,4,8]
RTA GA MROA EMMOO DEM EDEM

B-A 85.86 97.75 58.52 98.80 98.24 85.70

RING 76.61 89.79 57.90 99.66 95.19 84.24

W-S 76.85 89.69 60.40 99.13 94.04 84.46

Table 3: Edge prioritization, EP

RTA GA MROA EMMOO DEM EDEM

B-A 45.35 4110.22 3.13 1077.88 224.91 138.63

RING 42.79 4475.50 3.37 1066.64 315.66 173.59

W-S 45.96 4407.99 3.15 1064.44 290.66 161.51

Table 4: Execution time (ms), ET

on users. DEM, on the other hand, achieves significant energy reductions by
allowing for a more flexible trade-off with increased latency. Factors like the
queuing of queries from different users that can impact the overall transmis-
sion delay, will be addressed in the next step. Future work will also incorporate
user mobility into the design for better real-world applicability. Additionally, we
aim to develop online versions of EDEM and DEM, enabling dynamic service
rescheduling based on changing resource availability in MEC networks.

7 Acknowledgement

This work was supported in part by the Research Institute of Trustworthy Au-
tonomous Systems (RITAS), and in part by the Shenzhen Science and Technol-
ogy Program (project No. GJHZ20210705141807022).

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. science
286(5439), 509–512 (1999)

14 S. Chen et al.

2. Cai, X., Kuang, H., Hu, H., Song, W., Lü, J.: Response time aware operator place-
ment for complex event processing in edge computing. In: International Conference
on Service-Oriented Computing. pp. 264–278. Springer (2018)

3. Harutyunyan, D., Shahriar, N., Boutaba, R., Riggio, R.: Latency and mobility–
aware service function chain placement in 5g networks. IEEE Transactions on
Mobile Computing 21(5), 1697–1709 (2020)

4. Ijaz, S., Munir, E.U., Ahmad, S.G., Rafique, M.M., Rana, O.F.: Energy-makespan
optimization of workflow scheduling in fog–cloud computing. Computing 103,
2033–2059 (2021)

5. Kaur, K., Garg, S., Kaddoum, G., Ahmed, S.H., Atiquzzaman, M.: Keids:
Kubernetes-based energy and interference driven scheduler for industrial iot in
edge-cloud ecosystem. IEEE Internet of Things Journal 7(5), 4228–4237 (2019)

6. Lera, I., Guerrero, C., Juiz, C.: Yafs: A simulator for iot scenarios in fog computing.
IEEE Access 7, 91745–91758 (2019)

7. Mo, J., Liu, J., Zhao, Z.: Exploiting function-level dependencies for task offload-
ing in edge computing. In: IEEE INFOCOM 2022-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). pp. 1–6. IEEE (2022)

8. Nguyen, L.X., Tun, Y.K., Dang, T.N., Park, Y.M., Han, Z., Hong, C.S.: Depen-
dency tasks offloading and communication resource allocation in collaborative uavs
networks: A meta-heuristic approach. IEEE Internet of Things Journal (2023)

9. Oikonomou, P., Karanika, A., Anagnostopoulos, C., Kolomvatsos, K.: On the use
of intelligent models towards meeting the challenges of the edge mesh. ACM Com-
puting Surveys (CSUR) 54(6), 1–42 (2021)

10. Salaht, F.A., Desprez, F., Lebre, A.: An overview of service placement problem in
fog and edge computing. ACM Computing Surveys (CSUR) 53(3), 1–35 (2020)

11. Sarrafzade, N., Entezari-Maleki, R., Sousa, L.: A genetic-based approach for service
placement in fog computing. The Journal of Supercomputing 78(8), 10854–10875
(2022)

12. Shang, Y., Li, J., Wu, X.: Dag-based task scheduling in mobile edge computing. In:
2020 7th International Conference on Information Science and Control Engineering
(ICISCE). pp. 426–431. IEEE (2020)

13. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized iot
service placement in the fog. Service Oriented Computing and Applications 11(4),
427–443 (2017)

14. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. nature
393(6684), 440–442 (1998)

15. Zhang, G., Zhang, W., Cao, Y., Li, D., Wang, L.: Energy-delay tradeoff for dynamic
offloading in mobile-edge computing system with energy harvesting devices. IEEE
Transactions on Industrial Informatics 14(10), 4642–4655 (2018)

16. Zhang, Y., Chen, J., Zhou, Y., Yang, L., He, B., Yang, Y.: Dependent task offload-
ing with energy-latency tradeoff in mobile edge computing. IET Communications
16(17), 1993–2001 (2022)

17. Zhao, X., Shi, Y., Chen, S.: Maesp: Mobility aware edge service placement in mobile
edge networks. Computer Networks 182, 107435 (2020)

	Efficient Placement of Interdependent Services in Multi-access Edge Computing

